CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1049-1062
DOI: 10.1055/s-0037-1611649
short review
Copyright with the author

Transition-Metal-Catalyzed Alkenyl sp2 C–H Activation: A Short Account

Manikantha Maraswami
a  Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616, Singapore   Email: [email protected]
,
a  Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616, Singapore   Email: [email protected]
b  Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. of China
c  Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
› Author Affiliations
We are thankful to Nanyang Technological University, Singapore Ministry of Education Academic Research Fund [Tier 1: MOE2015-T1-001-070 (RG5/15), MOE2014-T1-001-102 (RG9/14) and MOE2018-T1-001-110 (RG12/18)], Nanjing Tech University, and the Singapore National Research Foundation (NRF2015NRF-POC001-024) for generous financial support. We gratefully acknowledge the funding support of the State Key Program of the National Natural Science Foundation of China (21432009), the National Natural Science Foundation of China (21372210, 21672198), the State Key Laboratory of Elemento-organic Chemistry, Nankai University (201620) and the Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM) for financial support.
Further Information

Publication History

Received: 23 November 2018

Accepted: 14 December 2018

Publication Date:
23 January 2019 (online)


Published as part of the 50 Years SYNTHESISGolden Anniversary Issue

Abstract

Alkenes are ubiquitous in Nature and their functionalization continues to attract attention from the scientific community. On the other hand, activation of alkenyl sp2 C–H bonds is challenging due to their chemical properties. In this short account, we elucidate, discuss and describe the utilization of transition-metal catalysts in alkene activation and provide useful strategies to synthesize organic building blocks in an efficient and sustainable manner.

1 Introduction

2 Breakthrough

3 Controlling E/Z, Z/E Selectivity

3.1 Esters and Amides as Directing Groups

3.2 The Chelation versus Non-Chelation Concept

4 Other Alkene Derivatives

5 Intramolecular C–H Activation

6 Conclusion and Future Projects

 
  • References

    • 1a Fringuelli F, Taticchi A. Dienes in the Diels-Alder Reaction . Wiley-Interscience; New York: 1990
    • 1b Luh T.-Y, Wong K.-T. Synthesis 1993; 349
    • 1c Mehta G, Rao HS. P. In The Chemistry of Dienes and Polyenes, Vol. 1. Rappoport Z. John Wiley & Sons; New York: 1997: 359
    • 1d Negishi E.-I, Huang Z, Wang G, Mohan S, Wang C, Hattori H. Acc. Chem. Res. 2008; 41: 14741
    • 1e Negishi E.-I. Angew. Chem. Int. Ed. 2011; 50: 6738
    • 1f Keller-Schierlein W, Meyer M, Cellai L, Cerrini S, Lamba D, Segre A, Fedeli W, Brufani M. J. Antibiot. 1984; 37: 1357
    • 1g Kuttruff CA, Geiger S, Cakmak M, Mayer P, Trauner D. Org. Lett. 2012; 14: 1070
    • 2a Santos L, Fant F, Medeiros MA, Borremans FA. M, Costa MC, Curto MJ. M. Magn. Reson. Chem. 2000; 38: 937
    • 2b Carter KD, Panek JS. Org. Lett. 2004; 6: 55
    • 2c Tanaka J, Higa T. Tetrahedron Lett. 1996; 37: 5535
    • 2d Cutignano A, Bruno I, Bifulco G, Casapullo A, Debitus C, Gomez-Paloma L, Riccio R. Eur. J. Org. Chem. 2001; 775

      For selected very recent reviews on transition-metal-catalyzed C–H activation, see:
    • 3a Mishra NK, Sharma S, Park J, Han S, Kim IS. ACS Catal. 2017; 7: 2821
    • 3b Hirano K, Miura M. Chem. Sci. 2018; 9: 22
    • 3c Song GY, Li XW. Acc. Chem. Res. 2015; 48: 1007
    • 3d Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 3e Ping L, Chung DS, Bouffard J, Lee SG. Chem. Soc. Rev. 2017; 46: 4299
    • 3f Leitch JA, Bhonoah Y, Frost CG. ACS Catal. 2017; 7: 5618
    • 3g Wang S, Chen SY, Yu XQ. Chem. Commun. 2017; 53: 3165 ; and the references cited therein
    • 4a Tokuyama H, Yokoshima S, Yamashita T, Fukuyama T. Tetrahedron Lett. 1998; 39: 3189
    • 4b Hatanaka Y, Hiyama T. J. Org. Chem. 1988; 53: 918
    • 4c Miyaura N, Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866
    • 4d King AO, Okukado N, Negishi EI. J. Chem. Soc., Chem. Commun. 1977; 683
    • 4e Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 4467
    • 4f Heck RF, Nolley JP. J. Org. Chem. 1972; 37: 2320
    • 4g Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
    • 5a da Silva MJ, Gusevskaya EV. J. Mol. Catal. A: Chem. 2001; 176: 23
    • 5b da Silva MJ, Goncalves JA, Alves RB, Howarth OW, Gusevskaya EV. J. Organomet. Chem. 2004; 689: 302
  • 6 Hatamoto Y, Sakaguchi S, Ishii Y. Org. Lett. 2004; 6: 4623
  • 7 Xu YH, Lu J, Loh TP. J. Am. Chem. Soc. 2009; 131: 1372
  • 8 Xu YH, Wang WJ, Wen ZK, Hartley JJ, Loh TP. Tetrahedron Lett. 2010; 51: 3504
  • 9 Yu HF, Jin WW, Sun CL, Chen JP, Du WM, He SB, Yu ZK. Angew. Chem. Int. Ed. 2010; 49: 5792
  • 10 Zhang YX, Cui ZL, Li ZJ, Liu ZQ. Org. Lett. 2012; 14: 1838
  • 11 Zhang X, Wang M, Zhang MX, Xu YH, Loh TP. Org. Lett. 2013; 15: 5531
  • 12 Besset T, Kuhl N, Patureau FW, Glorius F. Chem. Eur. J. 2011; 17: 7167
  • 13 Zhang J, Loh TP. Chem. Commun. 2012; 48: 11232
    • 15a Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 15b De Sarkar S, Liu W, Kozhushkov SI, Ackermann L. Adv. Synth. Catal. 2014; 356: 1461
    • 16a Sonoda M, Kakiuchi F, Kamatani A, Chatani N, Murai S. Chem. Lett. 1996; 109
    • 16b Park SH, Kim JY, Chang S. Org. Lett. 2011; 13: 2372
    • 16c Graczyk K, Ma WB, Ackermann L. Org. Lett. 2012; 14: 4110
    • 16d Padala K, Pimparkar S, Madasamy P, Jeganmohan M. Chem. Commun. 2012; 48: 7140
  • 17 Hu XH, Zhang J, Yang XF, Xu YH, Loh TP. J. Am. Chem. Soc. 2015; 137: 3169
  • 18 Feng C, Feng DM, Loh TP. Chem. Commun. 2015; 51: 342
  • 20 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 21a Kong J.-R, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2006; 128: 718
    • 21b Lumbroso A, Cooke ML, Breit B. Angew. Chem. Int. Ed. 2013; 52: 1890
    • 21c Li H, Walsh PJ. J. Am. Chem. Soc. 2005; 127: 8355
    • 21d Lloyd Jones GC. Org. Biomol. Chem. 2003; 1: 215
    • 21e Trost BM, Toste FD, Pinkerton AB. Chem. Rev. 2001; 101: 2067
    • 21f Diver ST, Giessert AJ. Chem. Rev. 2004; 104: 1317
    • 21g Zhang L, Sun J, Kozmin SA. Adv. Synth. Catal. 2006; 348: 2271
    • 21h Aubert C, Buisine O, Malacria M. Chem. Rev. 2002; 102: 813
    • 21i Zeng X. Chem. Rev. 2013; 113: 6864
    • 21j Fairlamb IJ. S. Angew. Chem. Int. Ed. 2004; 43: 1048
    • 21k Miller KM, Luanphaisarnnont T, Molinaro C, Jamison TK. J. Am. Chem. Soc. 2004; 126: 4130
    • 21l Mamane V, Hannen P, Fürstner A. Chem. Eur. J. 2004; 10: 4556
    • 22a Zein N, Sinba AM, McGahren WJ, Ellestad GA. Science 1988; 240: 1198
    • 22b Ratovelomanana V, Linstrumelle G. Synth. Commun. 1981; 11: 917
    • 22c Nicolaou KC, Dai MW. Angew. Chem. Int. Ed. 1991; 30: 1387
    • 22d El-Jaber N, Estevez-Braun A, Ravelo AG, Munoz-Munoz O, Rodriguez-Afonso A, Murguia JR. J. Nat. Prod. 2003; 66: 722
    • 22e Fontana A, d’Ippolito G, D’Souza L, Mollo E, Parameswaram PS, Cimino G. J. Nat. Prod. 2001; 64: 131
    • 22f Gung BW, Kumi G. J. Org. Chem. 2004; 69: 348
  • 23 Collins KD, Lied F, Glorius F. Chem. Commun. 2014; 50: 4459
  • 24 Feng C, Feng DM, Luo Y, Loh TP. Org. Lett. 2014; 16: 5956
  • 25 Kuhl N, Schroder N, Glorius F. Org. Lett. 2013; 15: 3860
  • 26 Wang HG, Beiring B, Yu DG, Collins KD, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 12430
  • 27 Lu P, Feng C, Loh T.-P. Org. Lett. 2015; 17: 3210
    • 28a Mishra NK, Park J, Sharma S, Han S, Kim M, Shin Y, Jang JB, Kwak JH, Jung YH, Kim IS. Chem. Commun. 2014; 50: 2350
    • 28b Guo L, Chen YY, Zhang R, Peng QJ, Xu LT, Pan XH. Chem. Asian J. 2017; 12: 289
    • 28c Xu LT, Zhang C, He YP, Tan LS, Ma DW. Angew. Chem. Int. Ed. 2016; 55: 321
    • 28d Zhou Q, Zhang JF, Cao H, Zhong R, Hou XF. J. Org. Chem. 2016; 81: 12169
    • 28e Zhang XS, Zhu QL, Zhang YF, Li YB, Shi ZJ. Chem. Eur. J. 2013; 19: 11898
    • 29a Manikandan R, Madasamy P, Jeganmohan M. ACS Catal. 2016; 6: 230
    • 29b Jin HM, Zhu ZB, Jin N, Xie J, Cheng YX, Zhu CJ. Org. Chem. Front. 2015; 2: 378
    • 29c Cai SJ, Lin SY, Yi XL, Xi CJ. J. Org. Chem. 2017; 82: 512
    • 29d Li J, Ackermann L. Org. Chem. Front. 2015; 2: 1035
    • 30a Brook AG, Quigley MA, Peddle GJ. D, Schwartz NV, Warner CM. J. Am. Chem. Soc. 1960; 82: 5102
    • 30b Yoshida J, Itoh M, Matsunaga S, Isoe S. J. Org. Chem. 1992; 57: 4877
  • 31 Song SJ, Lu P, Liu H, Cai SH, Feng C, Loh TP. Org. Lett. 2017; 19: 2869

    • For selected reviews on trifluoromethylations, see:
    • 32a Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
    • 32b Charpentier J, Fruh N, Togni A. Chem. Rev. 2015; 115: 650
    • 32c Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
    • 32d Yang XY, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 32e Alonso C, de Marigorta EM, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
  • 33 Feng C, Loh TP. Angew. Chem. Int. Ed. 2013; 52: 12414
  • 35 Wen ZK, Xu YH, Loh TP. Chem. Eur. J. 2012; 18: 13284
    • 36a Wang C, Ge HB. Chem. Eur. J. 2011; 17: 14371
    • 36b Shang R, Ilies L, Asako S, Nakamura E. J. Am. Chem. Soc. 2014; 136: 14349
    • 36c Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
    • 36d Kozhushkov SI, Ackermann L. Chem. Sci. 2013; 4: 886
    • 36e Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 37a Shi BF, Maugel N, Zhang YH, Yu JQ. Angew. Chem. Int. Ed. 2008; 47: 4882
    • 37b Paquette LA, Lobben PC. J. Org. Chem. 1998; 63: 5604
    • 37c Nerzstormes M, Thornton ER. J. Org. Chem. 1991; 56: 2489
    • 37d Engle KM, Yu JQ. J. Org. Chem. 2013; 78: 8927
  • 38 Liang QJ, Yang C, Meng FF, Jiang B, Xu YH, Loh TP. Angew. Chem. Int. Ed. 2017; 56: 5091
  • 39 Zhou H, Chung WJ, Xu YH, Loh TP. Chem. Commun. 2009; 3472
    • 40a Zhang L, Wu J. J. Am. Chem. Soc. 2008; 130: 12250
    • 40b Denmark SE, Sweis RF. Acc. Chem. Res. 2002; 35: 835
  • 41 Zhou H, Xu YH, Chung WJ, Loh TP. Angew. Chem. Int. Ed. 2009; 48: 5355
  • 42 Xu YH, Chok YK, Loh TP. Chem. Sci. 2011; 2: 1822
  • 43 Pankajakshan S, Xu YH, Cheng JK, Low MT, Loh TP. Angew. Chem. Int. Ed. 2012; 51: 5701
  • 44 Boultadakis-Arapinis M, Hopkinson MN, Glorius F. Org. Lett. 2014; 16: 1630
  • 45 Feng C, Feng DM, Loh TP. Chem. Commun. 2014; 50: 9865
  • 46 Feng C, Loh TP. Chem. Sci. 2012; 3: 3458
  • 47 Xu YH, Zhang QC, He T, Meng FF, Loh TP. Adv. Synth. Catal. 2014; 356: 1539
  • 48 Xu YH, He T, Zhang QC, Loh TP. Chem. Commun. 2014; 50: 2784
  • 49 Hu XH, Yang XF, Loh TP. Angew. Chem. Int. Ed. 2015; 54: 15535

    • Selected reviews and examples of metal-catalyzed cross-couplings of enol phosphates:
    • 50a You W, Li Y, Brown MK. Org. Lett. 2013; 15: 1610
    • 50b Hansen AL, Ebran J.-P, Ahlquist M, Norrby P.-O, Skrydstrup T. Angew. Chem. Int. Ed. 2006; 45: 3349
    • 50c Fuwa H. Synlett 2011; 6

      For recent reviews, see:
    • 51a Gigant N, Chausset-Boissarie L, Gillaizeau I. Chem. Eur. J. 2014; 20: 548
    • 51b Matsubara R, Kobayashi S. Acc. Chem. Res. 2008; 41: 292
  • 52 Ding R, Huang ZD, Liu ZL, Wang TX, Xu YH, Loh TP. Chem. Commun. 2016; 52: 5617
  • 53 Jiang B, Meng FF, Liang QJ, Xu YH, Loh TP. Org. Lett. 2017; 19: 914
    • 54a Mayer AM. S, Rodriguez AD, Berlinck RG. S, Hamann MT. Biochim. Biophys. Acta, Gen. Subj. 2009; 1790: 283
    • 54b Coleman JJ, Ghosh S, Okoli I, Mylonakis E. PLoS One 2011; 6: 25321
    • 54c Yu X, Sun D. Molecules 2013; 18: 6230
    • 54d Jelić D, Antolović R. Antibiotics 2016; 5: 29
  • 55 Jiang B, Zhao M, Li SS, Xu YH, Loh TP. Angew. Chem. Int. Ed. 2018; 57: 555