CC BY ND NC 4.0 · Synlett 2019; 30(04): 499-502
DOI: 10.1055/s-0037-1611639
letter
Copyright with the author

Reduction of Nitroarenes to Anilines with a Benzothiazoline: Application to Enantioselective Synthesis of 2-Arylquinoline Derivatives

,
Ryota Yamamoto
,
Nanako Kobayashi
,
This work was partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Advanced Transformation Organocatalysis” from MEXT, Japan, and JSPS KAKENHI Grant Number JP17H03060.
Further Information

Publication History

Received: 09 October 2018

Accepted after revision: 19 November 2018

Publication Date:
17 December 2018 (eFirst)

 

Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

Abstract

The metal-free reduction of nitroarenes to aniline derivatives was accomplished in a short time by using a benzothiazoline as the hydrogen donor in combination with a Brønsted acid. An enantioselective synthesis of 2-arylquinolines was achieved by using 1-aryl-3-(2-nitrophenyl)propan-1-ones as starting materials and a combination of a benzothiazoline and a chiral phosphoric acid.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 2a Kadam HK, Tilve SG. RSC Adv. 2015; 5: 83391
    • 2b Blaser H.-U, Steiner H, Studer M. ChemCatChem 2009; 1: 210
    • 2c Orlandi M, Brenna D, Harms R, Jost S, Benaglia M. Org. Process Res. Dev. 2018; 22: 430
    • 2d Aditya T, Pal A, Pal T. Chem. Commun. 2015; 51: 9410
  • 3 Béchamp A. Ann. Chim. Phys. 1854; 42[3]: 186
  • 4 Blaser H.-U. Chimia 2015; 69: 393
    • 5a Porta R, Puglisi A, Colombo G, Rossi S, Benaglia M. Beilstein J. Org. Chem. 2016; 12: 2614
    • 5b Orlandi M, Tosi F, Bonsignore M, Benaglia M. Org. Lett. 2015; 17: 3941
    • 5c Orlandi M, Benaglia M, Tosi F, Annunziata R, Cozzi F. J. Org. Chem. 2016; 81: 3037
  • 6 Giomi D, Alfini R, Brandi A. Tetrahedron 2011; 67: 167
  • 7 Chen D, Zhou Y, Zhou H, Liu S, Liu Q, Zhang K, Uozumi Y. Synlett 2018; 29: 1765
    • 8a Zhu C, Akiyama T. Org. Lett. 2009; 11: 4180
    • 8b Zhu C, Saito K, Yamanaka M, Akiyama T. Acc. Chem. Res. 2015; 48: 388
    • 8c Zhu C, Akiyama T. Synlett 2011; 1251

      For seminal papers on chiral phosphoric acid catalysis, see:
    • 9a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 9b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356

    • For selected reviews, see:
    • 9c Akiyama T. Chem. Rev. 2007; 107: 5744
    • 9d Terada M. Synthesis 2010; 1929
    • 9e Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 9f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2017; 117: 10608
    • 9g Merad J, Lalli G, Bernadat G, Maur J, Masson G. Chem. Eur. J. 2018; 24: 3925

      For pioneering works on chiral phosphoric acid-catalyzed transfer hydrogenation of ketimines by using the Hantzsch ester as a hydrogen donor, see:
    • 10a Rueping M, Sugiono E, Azap C, Theissmann T, Bolte M. Org. Lett. 2005; 7: 3781
    • 10b Hoffmann S, Seayad A, List B. Angew. Chem. Int. Ed. 2005; 44: 7424
    • 10c Storer RI, Carrera DE, Ni Y, MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 84; For selected reviews, see
    • 10d Rueping M, Sugiono E, Schoepke FR. Synlett 2010; 852
    • 10e Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
  • 11 For an enantioselective metal-free cascade reaction with a chiral phosphoric acid, see: Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 3683
  • 12 Shibata Y, Yamanaka M. J. Org. Chem. 2013; For a theoretical study on chiral phosphoric acid-catalyzed transfer hydrogenation using a benzothiazoline, see: 78: 3731
  • 13 2-Aryl-1,2,3,4-tetrahydroquinolines 10a–c; General ProcedureUnder a N2 atmosphere, a mixture of the appropriate ketone 9 (0.10 mmol), benzothiazoline 2f (0.60 mmol), chiral phosphoric acid 8 (0.010 mmol), and MS 3Å (600 wt%, activated) in toluene (1.0 mL) was refluxed for 2 days. When the reaction was complete (TLC), it was quenched by adding sat. aq NaHCO3. The crude mixture was filtered through a Celite pad and extracted with EtOAc (×3). The organic extracts were combined, washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by preparative TLC.2-Phenyl-1,2,3,4-tetrahydroquinoline (10a)White solid; yield: 13 mg (60%, 92% ee); mp 52–54 °C; [α]D 24 –42 (c 0.75, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.94–2.05 (m, 1 H), 2.09–2.15 (m, 1 H), 2.74 (dt, J = 4.8, 16.4 Hz, 1 H), 2.93 (ddd, J = 5.6, 10.8, 16.4 Hz, 1 H), 4.04 (br s, 1 H), 4.43 (dd, J = 3.4, 9.2 Hz, 1 H), 6.53 (d, J = 8.4 Hz, 1 H), 6.65 (t, J = 7.6 Hz, 1 H), 6.99–7.02 (m, 2 H), 7.24–7.40 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 26.4, 31.0, 56.3, 114.0, 117.2, 120.9, 126.6, 126.9, 127.5, 128.6, 129.3, 144.7, 144.8.