CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1037-1048
DOI: 10.1055/s-0037-1611637
short review
Copyright with the author

Synthesis of Bullvalenes: Classical Approaches and Recent Developments

Sofia Ferrer
a  Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
,
a  Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
b  Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c. Marcel·lí Domingo s/n, 43007 Tarragona, Spain   Email: [email protected]
› Author Affiliations
This work has been supported by Agencia Estatal de Investigación (CTQ2016-75960-P MINECO/AEI/FEDER, UE), AEI-Severo Ochoa Excellence Accreditation 2014-2018 (SEV-2013-0319), the MEC (FPU fellowship to S. F.), the European Research Council (Advanced Grant No. 321066), the AGAUR (2017 SGR 1257), the CERCA Program/Generalitat de Catalunya and the ICIQ Foundation.
Further Information

Publication History

Received: 25 November 2018

Accepted: 28 November 2018

Publication Date:
14 January 2019 (online)


Dedicated to the memory of Prof. Félix Serratosa, a pioneer of organic synthesis in Spain

Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

The goal of this short review is to provide an overview of the different synthetic methodologies applied along the years for the synthesis of bullvalenes, prototypical fluxional molecules that were key in the understanding of valence tautomerism phenomena. Some interesting applications of these unique shapeshifting compounds are also presented.

1 Introduction

2 Classical Syntheses of Bullvalenes

3 Recent Developments in the Synthesis of Bullvalenes

4 Applications of Bullvalenes

5 Conclusion

 
  • References

  • 1 Cotton FA. Acc. Chem. Res. 1968; 1: 257
    • 2a Doering W. vE, Roth WR. Angew. Chem., Int. Ed. Engl. 1963; 2: 115 ; Angew. Chem. 1963, 75, 27
    • 2b Williams RV. Chem. Rev. 2001; 101: 1185
    • 2c Hrovat DA, Brown EC, Williams RV, Quast H, Borden WT. J. Org. Chem. 2005; 70: 1627
    • 2d He M, Bode JW. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 14752
    • 3a Doering W. vE, Roth WR. Tetrahedron 1963; 19: 715
    • 3b Doering W. vE, Ferrier BM, Fossel ET, Hatenstein JH, Jones MJr, Klumpp G, Rubin RM, Saunders M. Tetrahedron 1967; 23: 3943
    • 4a Schröder G. Angew. Chem., Int. Ed. Engl. 1963; 2: 481 ; Angew. Chem. 1963, 75, 722
    • 4b Schröder G. Chem. Ber. 1964; 97: 3140
    • 4c Merényi R, Oth JF. M, Schröder G. Chem. Ber. 1964; 97: 3150
    • 4d Schröder G, Oth JF. M, Merényi R. Angew. Chem., Int. Ed. Engl. 1965; 4: 752 ; Angew. Chem. 1965, 77, 774
  • 5 Saunders M. Tetrahedron Lett. 1963; 4: 1699
    • 6a Poupko R, Zimmermann H, Luz Z. J. Am. Chem. Soc. 1984; 106: 5391
    • 6b Maeir BH, Earl WL. J. Am. Chem. Soc. 1985; 107: 5553
    • 6c Luger P, Roth K. J. Chem. Soc., Perkin Trans. 2 1989; 649
    • 6d Titman JJ, Luz Z, Spiess HW. J. Am. Chem. Soc. 1992; 114: 3765
    • 6e Schlick S, Luz Z, Poupko R. J. Am. Chem. Soc. 1992; 114: 4315
    • 7a Poupko R, Zimmermann H, Müller K, Luz Z. J. Am. Chem. Soc. 1996; 118: 7995
    • 7b Müller K, Zimmermann H, Krieger C, Poupko R, Luz Z. J. Am. Chem. Soc. 1996; 118: 8006
    • 7c Poupko R, Müller K, Krieger C, Zimmermann H, Luz Z. J. Am. Chem. Soc. 1996; 118: 8015
    • 7d Luz Z, Olivier L, Poupko R, Müller K, Krieger C, Zimmermann H. J. Am. Chem. Soc. 1998; 120: 5526
    • 8a Volkmann B, Schröder G. Chem. Ber. 1984; 117: 2226
    • 8b Rebsamen K, Schröder G. Chem. Ber. 1993; 126: 1425
    • 9a Lippert AR, Kaeobamrung J, Bode JW. J. Am. Chem. Soc. 2006; 128: 14738
    • 9b Lippert AR, Keleshian VL, Bode JW. Org. Biomol. Chem. 2009; 7: 1529
    • 9c Larson KK, He M, Teichert JF, Naganawa A, Bode JW. Chem. Sci. 2012; 3: 1825
    • 9d He M, Bode JW. Org. Biomol. Chem. 2013; 11: 1306
  • 10 Oth JF. M, Müllen K, Gilles J.-M, Schröder G. Helv. Chim. Acta 1974; 57: 1415
  • 11 Ault A. J. Chem. Educ. 2001; 78: 924
  • 12 Doering W. vE, Rosenthal JW. J. Am. Chem. Soc. 1966; 88: 2078
  • 13 Jones JrM, Scott LT. J. Am. Chem. Soc. 1967; 89: 150
    • 14a Akiyoshi S, Matsuda T. J. Am. Chem. Soc. 1955; 77: 2476
    • 14b Phillips DD. J. Am. Chem. Soc. 1955; 77: 5179
    • 14c Bangert KF, Boekelheide V. J. Am. Chem. Soc. 1964; 86: 905
    • 14d Bangert KF, Boekelheide V. J. Am. Chem. Soc. 1964; 86: 1159
    • 14e Jones M, Scott LT. J. Am. Chem. Soc. 1970; 92: 3118
    • 15a Lambert JB. Tetrahedron Lett. 1963; 4: 1901
    • 15b Barborak JC, Chari S, Schleyer P. vR. J. Am. Chem. Soc. 1971; 93: 5275
    • 15c Nakanishi H, Yamamoto O. Chem. Lett. 1975; 513
    • 15d Engdahl C, Ahlberg P. J. Am. Chem. Soc. 1979; 101: 3940
  • 16 Johnston ER, Barber JS, Jacomet M, Barborak JC. J. Am. Chem. Soc. 1998; 120: 1489
  • 17 Font J, López F, Serratosa F. Tetrahedron Lett. 1972; 13: 2589
  • 18 Stetter H, Stark H. Chem. Ber. 1959; 92: 732
  • 19 Shapiro RH, Heath MJ. J. Am. Chem. Soc. 1967; 89: 5734
  • 20 Casas J, Serratosa F. An. Quim. 1977; 73: 300
  • 21 Schröder G, Oth JF. M. Angew. Chem., Int. Ed. Engl. 1967; 6: 414
  • 22 Oth JF. M, Merényi R, Nielsen J, Schröder G. Chem. Ber. 1965; 98: 3385
  • 23 Oth JF. M, Merényi R, Rottele H, Schröder G. Chem. Ber. 1967; 100: 3538
  • 24 Rebsamen K, Röttele H, Schröder G. Chem. Ber. 1993; 126: 1429
  • 25 Rebsamen K, Röttele H, Schröder G. Chem. Ber. 1993; 126: 1419
  • 26 Hoogzand C, Nielsen J, Oth JF. M. Tetrahedron Lett. 1970; 11: 2287
  • 27 Oth JF. M, Machens E, Röttele H, Schröder G. Justus Liebigs Ann. Chem. 1971; 745: 112
  • 28 Oth JF. M, Merényi R, Engel G, Schröder G. Tetrahedron Lett. 1966; 7: 3377
  • 29 Sarma K, Schröder G. Chem. Ber. 1984; 117: 633
  • 30 Vogel E, Grimme W, Meckel W, Riebel HJ, Oth JF. M. Angew. Chem., Int. Ed. Engl. 1966; 5: 590 ; Angew. Chem. 1966, 78, 599
  • 31 Krüerke U. Angew. Chem., Int. Ed. Engl. 1967; 6: 79 ; Angew. Chem. 1967, 79, 55
  • 32 Sarma K, Witt W, Schröder G. Chem. Ber. 1986; 119: 2339
    • 34a Jiménez-Núñez E, Echavarren AM. Chem. Rev. 2008; 108: 3326
    • 34b Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 34c Dorel R, Echavarren AM. J. Org. Chem. 2015; 80: 7321
  • 35 Ferrer S, Echavarren AM. Angew. Chem. Int. Ed. 2016; 55: 11178 ; Angew. Chem. 2016, 128, 11344
  • 36 Liu H, Sun C, Lee N.-K, Henry RF, Lee D. Chem.–Eur. J. 2012; 18: 11889
  • 37 Scott WJ, Stille JK. J. Am. Chem. Soc. 1986; 108: 3033
  • 38 Scott WJ, Crisp GT, Stille JK. J. Am. Chem. Soc. 1984; 106: 4630
  • 39 Yahiaoui O, Pašteka LF, Judeel B, Fallon T. Angew. Chem. Int. Ed. 2018; 57: 2570 ; Angew. Chem. 2018, 130, 2600
    • 40a Schröder G, Witt W. Angew. Chem., Int. Ed. Engl. 1979; 18: 311
    • 40b Sarma K, Witt W, Schröder G. Chem. Ber. 1983; 116: 3800