CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1021-1036
DOI: 10.1055/s-0037-1611636
short review
Copyright with the author

Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element?

Jennifer M. Crawford
,
Matthew S. Sigman*
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA   Email: sigman@chem.utah.edu
› Author Affiliations
J.M.C. acknowledges the support of the NSF Graduate Research Fellowship Program. M.S.S. thanks the NIH (1 R01 GM121383) for supporting this work.
Further Information

Publication History

Received: 23 November 2018

Accepted: 28 November 2018

Publication Date:
08 January 2019 (online)


Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

Traditionally, highly selective low molecular weight catalysts have been designed to contain rigidifying structural elements. As a result, many proposed stereochemical models rely on steric repulsion for explaining the observed selectivity. Recently, as is the case for enzymatic systems, it has become apparent that some flexibility can be beneficial for imparting selectivity. Dynamic catalysts can reorganize to maximize attractive non-covalent interactions that stabilize the favored diastereomeric transition state, while minimizing repulsive non-covalent interactions for enhanced selectivity. This short review discusses catalyst conformational dynamics and how these effects have proven beneficial for a variety of catalyst classes, including tropos ligands, cinchona alkaloids, hydrogen-bond donating catalysts, and peptides.

1 Introduction

2 Tropos Ligands

3 Cinchona Alkaloids

4 Hydrogen-Bond Donating Catalysts

5 Peptide Catalysts

6 Conclusion

 
  • References

    • 1a Smith AJ. T, Müller R, Toscano MD, Kast P, Hellinga HW, Hilvert D, Houk KN. J. Am. Chem. Soc. 2008; 130: 15361
    • 1b Garcia-Viloca M, Gao J, Karplus M, Truhlar DG. Science 2004; 303: 186
    • 1c Warshel A, Sharma PK, Kato M, Xiang Y, Liu HB, Olsson MH. M. Chem. Rev. 2006; 106: 3210
  • 2 Bahar I, Chennubhotla C, Tobi D. Curr. Opin. Struct. Biol. 2007; 17: 633
  • 3 Fischer E. Ber. Dtsch. Chem. Ges. 1894; 27: 3189
    • 4a Koshland DE. Angew. Chem. Int. Ed. 1994; 33: 2375
    • 4b Hong CM, Kaphan DM, Bergman RG, Raymond KN, Toste FD. J. Am. Chem. Soc. 2017; 139: 8013
    • 4c Monod J, Wyman J, Changeux JP. J. Mol. Biol. 1965; 12: 88
    • 5a Austin JF, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 1172
    • 5b Corey EJ, Ishihara K. Tetrahedron Lett. 1992; 33: 6807
    • 5c Trost BM, Machacek MR, Aponick A. Acc. Chem. Res. 2006; 39: 747
    • 5d Noyori R, Tokunaga M, Kitamura M. Bull. Chem. Soc. Jpn. 1995; 68: 36
    • 6a Knowles RR, Jacobsen EN. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20678
    • 6b Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
    • 6c Davis HJ, Phipps RJ. Chem. Sci. 2017; 8: 864
    • 7a Toste FD, Sigman MS, Miller SJ. Acc. Chem. Res. 2017; 50: 609
    • 7b Neel AJ, Hilton MJ, Sigman MS, Toste FD. Nature 2017; 543: 637
  • 8 Ōki M. Recent Advances in Atropisomerism . In Topics in Stereochemistry . Vol. 14. Allinger NL, Eliel EL, Wilen SH. John Wiley & Sons; New York: 1983: 1
  • 10 Noyori R, Ohkuma T, Kitamura M, Takaya H, Sayo N, Kumobayashi H, Akutagawa S. J. Am. Chem. Soc. 1987; 109: 5856
  • 11 Ohta T, Takaya H, Noyori R. Inorg. Chem. 1988; 27: 566
  • 12 Clayden J. Chem. Commun. 2004; 127
    • 13a Mikami K, Aikawa K, Yusa Y, Jodry JJ, Yamanaka M. Synlett 2002; 1561
    • 13b Aikawa K, Mikami K. Chem. Commun. 2012; 48: 11050
    • 13c Storch G, Maier F, Wessig P, Trapp O. Eur. J. Org. Chem. 2016; 5123
    • 14a Mikami K, Matsukawa S. Nature 1997; 385: 613
    • 14b Faller JW, Lavoie AR, Parr J. Chem. Rev. 2003; 103: 3345
  • 15 Mikami K, Korenaga T, Terada M, Ohkuma T, Pham T, Noyori R. Angew. Chem. Int. Ed. 1999; 38: 495
  • 16 Storch G, Trapp O. Angew. Chem. Int. Ed. 2015; 54: 3580
  • 17 Siebert M, Storch G, Rominger F, Trapp O. Synthesis 2017; 49: 3485
  • 18 Pamies O, Dieguez M. Chem. Rec. 2016; 16: 2460
    • 19a Bellini R, Magre M, Biosca M, Norrby PO, Pamies O, Dieguez M, Moberg C. ACS Catal. 2016; 6: 1701
    • 19b Coll M, Pamies O, Dieguez M. Org. Lett. 2014; 16: 1892
    • 19c Dieguez M, Pamies O. Acc. Chem. Res. 2010; 43: 312
    • 19d Margalef J, Coll M, Norrby PO, Pamies O, Dieguez M. Organometallics 2016; 35: 3323
    • 19e Raluy E, Parmies O, Dieguez M. Adv. Synth. Catal. 2009; 351: 1648
  • 20 Pamies O, Dieguez M, Claver C. J. Am. Chem. Soc. 2005; 127: 3646
    • 21a Bausch CC, Pfaltz A. PHOX Ligands . In Privileged Chiral Ligands and Catalysts . Zhou Q.-L. Wiley-VCH; Weinheim: 2011. Chap. 6, 221
    • 21b Trost BM. Acc. Chem. Res. 1996; 29: 355
    • 21c Helmchen G, Pfaltz A. Acc. Chem. Res. 2000; 33: 336
  • 22 Masdeu-Bulto AM, Dieguez M, Martin E, Gomez M. Coord. Chem. Rev. 2003; 242: 159
  • 23 Bredig G, Fiske P. Biochem. Z 1912; 46: 7
    • 24a Connon SJ. Chem. Commun. 2008; 2499
    • 24b Li H, Chen Y, Deng L. Cinchona Alkaloids . In Privileged Chiral Ligands and Catalysts . Zhou Q.-L. Wiley-VCH; Weinheim: 2011. Chap. 10, 361
    • 24c Marcelli T, Hiemstra H. Synthesis 2010; 1229
    • 24d Tian SK, Chen YG, Hang JF, Tang L, McDaid P, Deng L. Acc. Chem. Res. 2004; 37: 621
  • 25 Dijkstra GD. H, Kellogg RM, Wynberg H, Svendsen JS, Marko I, Sharpless KB. J. Am. Chem. Soc. 1989; 111: 8069
  • 26 Urakawa A, Meier DM, Rugger H, Baiker A. J. Phys. Chem. A 2008; 112: 7250
  • 27 Seeman JI. Chem. Rev. 1983; 83: 83
  • 28 Whitesell JK. Chem. Rev. 1989; 89: 1581
    • 29a Corey EJ, Noe MC. J. Am. Chem. Soc. 1993; 115: 12579
    • 29b Corey EJ, Noe MC. J. Am. Chem. Soc. 1996; 118: 11038
  • 30 Braje W, Frackenpohl J, Langer P, Hoffmann HM. R. Tetrahedron 1998; 54: 3495
  • 31 Tanzer EM, Schweizer WB, Ebert MO, Gilmour R. Chem. Eur. J. 2012; 18: 2006
  • 32 Li HM, Wang Y, Tang L, Deng L. J. Am. Chem. Soc. 2004; 126: 9906
  • 33 Li HM, Wang Y, Tang L, Wu FH, Liu XF, Guo CY, Foxman BM, Deng L. Angew. Chem. Int. Ed. 2005; 44: 105
    • 34a Chen YG, Deng L. Abstr. Pap. Am. Chem. Soc. 2002; 224: U249
    • 34b Chen YG, Deng L. J. Am. Chem. Soc. 2001; 123: 11302
    • 34c Chen YG, McDaid P, Deng L. Chem. Rev. 2003; 103: 2965
    • 34d Chen YG, Tian SK, Deng L. J. Am. Chem. Soc. 2000; 122: 9542
    • 34e Hang JF, Deng L. Synlett 2003; 1927
    • 34f Hang JF, Li HM, Deng L. Org. Lett. 2002; 4: 3321
    • 34g Hang JF, Tian SK, Tang L, Deng L. J. Am. Chem. Soc. 2001; 123: 12696
  • 35 Li HM, Liu XF, Wu FH, Tang LA, Deng L. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20625
    • 36a Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 36b Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
  • 37 Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 38a Sohtome Y, Nagasawa K. Chem. Commun. 2012; 48: 7777
    • 38b Sohtome Y, Nagasawa K. Synlett 2010; 1
  • 39 Sohtome Y, Tanaka S, Takada K, Yamaguchi T, Nagasawa K. Angew. Chem. Int. Ed. 2010; 49: 9254
  • 40 Eyring H. J. Chem. Phys. 1935; 3: 107
    • 41a Kato M, Hirao S, Nakano K, Sato M, Yamanaka M, Sohtome Y, Nagasawa K. Chem. Eur. J. 2015; 21: 18606
    • 41b Sohtome Y, Shin B, Horitsugi N, Takagi R, Noguchi K, Nagasawa K. Angew. Chem. Int. Ed. 2010; 49: 7299
  • 42 Buschmann H, Scharf HD, Hoffmann N, Esser P. Angew. Chem. Int. Ed. 1991; 30: 477
  • 43 Klausen RS, Kennedy CR, Hyde AM, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 12299
  • 44 Klausen RS, Jacobsen EN. Org. Lett. 2009; 11: 887
    • 45a Eder U, Sauer G, Wiechert R. Angew. Chem. Int. Ed. 1971; 10: 496
    • 45b Eder U, Sauer G, Wiechert R. German Patent 2014757, 1971
    • 45c Hajos ZG, Parrish DR. German Patent 2102623, 1971 .
    • 46a Davie EA. C, Mennen SM, Xu Y, Miller SJ. Chem. Rev. 2007; 107: 5759
    • 46b Miller SJ. Acc. Chem. Res. 2004; 37: 601
    • 46c Wennemers H. Chem. Commun. 2011; 47: 12036
    • 46d Wennemers H. Biopolymers 2013; 100: 241
  • 47 Privileged Chiral Ligands and Catalysts . Zhou Q.-L. Wiley-VCH; Weinheim: 2011
    • 48a Gardner RR, Gellman SH. J. Am. Chem. Soc. 1995; 117: 10411
    • 48b Haque TS, Little JC, Gellman SH. J. Am. Chem. Soc. 1996; 118: 6975
  • 49 Wilmot CM, Thornton JM. J. Mol. Biol. 1988; 203: 221
    • 50a Jarvo ER, Copeland GT, Papaioannou N, Bonitatebus PJ, Miller SJ. J. Am. Chem. Soc. 1999; 121: 11638
    • 50b Copeland GT, Miller SJ. J. Am. Chem. Soc. 2001; 123: 6496
    • 50c Fierman MB, O’Leary DJ, Steinmetz WE, Miller SJ. J. Am. Chem. Soc. 2004; 126: 6967
    • 51a Abascal NC, Metrano AJ, Lichtor PA, Giuliano MW, Miller SJ. Protein Sci. 2016; 25: 150
    • 51b Abascal NC, Miller SJ. Org. Lett. 2016; 18: 4646
    • 51c Metrano AJ, Abascal NC, Mercado BQ, Paulson EK, Hurtley AE, Miller SJ. J. Am. Chem. Soc. 2017; 139: 492
    • 51d Rigling C, Kisunzu JK, Duschmale J, Haussinger D, Wiesner M, Ebert MO, Wennemers H. J. Am. Chem. Soc. 2018; 140: 10829
    • 51e Metrano AJ, Abascal NC, Mercado BQ, Paulson EK, Miller SJ. Chem. Commun. 2016; 52: 4816
  • 52 Diener ME, Metrano AJ, Kusano S, Miller SJ. J. Am. Chem. Soc. 2015; 137: 12369
    • 53a Crawford JM, Stone EA, Metrano AJ, Miller SJ, Sigman MS. J. Am. Chem. Soc. 2018; 140: 868
    • 53b Yan XC, Metrano AJ, Robertson MJ, Abascal NC, Tirado-Rives J, Miller SJ, Jorgensen WL. ACS Catal. 2018; 8: 9968
  • 54 Thiel W. Angew. Chem. Int. Ed. 2014; 53: 8605
    • 55a Reid JP, Sigman MS. Nat. Rev. Chem. 2018; 2: 290
    • 55b Sigman MS, Harper KC, Bess EN, Milo A. Acc. Chem. Res. 2016; 49: 1292
    • 55c Santiago CB, Guo JY, Sigman MS. Chem. Sci. 2018; 9: 2398
  • 56 Glendening ED, Reed AE, Carpenter JE, Weinhold F. NBO Version 3.1
  • 57 Verloop A. Drug Design . Vol. III. Academic Press; New York: 1976
    • 58a Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 58b Denmark SE, Burk MT. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20655
    • 59a Schnitzer T, Wennemers H. J. Am. Chem. Soc. 2017; 139: 15356
    • 59b Schnitzer T, Wiesner M, Krattiger P, Revell JD, Wennemers H. Org. Biomol. Chem. 2017; 15: 5877
    • 60a Wiesner M, Neuburger M, Wennemers H. Chem. Eur. J. 2009; 15: 10103
    • 60b Wiesner M, Revell JD, Wennemers H. Angew. Chem. Int. Ed. 2008; 47: 1871
    • 60c Wiesner M, Revell JD, Tonazzi S, Wennemers H. J. Am. Chem. Soc. 2008; 130: 5610
    • 61a Wiesner M, Upert G, Angelici G, Wennemers H. J. Am. Chem. Soc. 2010; 132: 6
    • 61b Bachle F, Duschmale J, Ebner C, Pfaltz A, Wennemers H. Angew. Chem. Int. Ed. 2013; 52: 12619
    • 61c Duschmale J, Wiest J, Wiesner M, Wennemers H. Chem. Sci. 2013; 4: 1312
  • 62 Müller CE, Wanka L, Jewell K, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 6180
  • 63 Müller CE, Zell D, Hrdina R, Wende RC, Wanka L, Schuler SM. M, Schreiner PR. J. Org. Chem. 2013; 78: 8465
  • 64 Prochazkova E, Kolmer A, Ilgen J, Schwab M, Kaltschnee L, Fredersdorf M, Schmidts V, Wende RC, Schreiner PR, Thiele CM. Angew. Chem. Int. Ed. 2016; 55: 15754