CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 185-193
DOI: 10.1055/s-0037-1610412
short review
Copyright with the author

7-Azaindoline Auxiliary: A Versatile Attachment Facilitating Enantioselective­ C–C Bond-Forming Catalysis

Institute of Microbial chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan   eMail: nkumagai@bikaken.or.jp   eMail: mshibasa@bikaken.or.jp
,
Institute of Microbial chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan   eMail: nkumagai@bikaken.or.jp   eMail: mshibasa@bikaken.or.jp
› Institutsangaben
This work was financially supported by ACT-C (JPMJCR12YO) from JST, and KAKENHI (25713002, 17H03025, and JP16H01043 in Precisely Designed Catalysts with Customized Scaffolding) from JSPS. NK thanks The Naito Foundation for financial support.
Weitere Informationen

Publikationsverlauf

Received: 14. November 2018

Accepted: 16. November 2018

Publikationsdatum:
30. November 2018 (online)


Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

This short review provides an overview of 7-azaindoline auxiliaries in asymmetric catalysis. 7-Azaindoline serves as a useful attachment to carboxylic acids, and the thus-formed 7-azaindoline amides are amenable to atom-economical C–C bond-forming reactions with high stereoselectivity. The attachment is used for the sake of gaining traction in promoting the reaction of interest and can be easily removed after enantioselective reactions. Both nucleophilic and electrophilic catalyses are realized with broad tolerance for functional groups, showcasing the usefulness of 7-azaindoline auxiliaries for practical and streamlined synthesis of a wide range of acyclic chiral building blocks.

1 Introduction

2 7-Azaindoline as a Key Auxiliary

3 7-Azaindoline Amide as a Pronucleophile

3.1 α-Carbon-Substituted 7-Azaindoline Amide

3.2 α-Nitrogen-Substituted 7-Azaindoline Amide

3.3 α-Oxygen-Substituted 7-Azaindoline Amide

3.4 α-Fluorocarbon-Substituted 7-Azaindoline Amide

3.5 α-Halogen-Substituted 7-Azaindoline Amide

3.6 α-Sulfur-Substituted 7-Azaindoline Amide

4 7-Azaindoline Amide as an Electrophile

4.1 Conjugate Addition of Butenolides

4.2 1,3-Dipolar Cycloaddition of Nitrones

5 Transformation of 7-Azaindoline Amide

6 Conclusion

 
  • References


    • For reviews, see:
    • 1a Alcaide B, Almendros P. Eur. J. Org. Chem. 2002; 1595
    • 1b Modern Aldol Reactions . Mahrwald R. Wiley-VCH; Weinheim: 2004
    • 1c Notz W, Tanaka F, Barbas CF. III. Acc. Chem. Res. 2004; 37: 580
    • 1d Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 1e Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
    • 1f Modern Methods in Stereoselective Aldol Reactions. Mahrwald R. Wiley-VCH; Weinheim: 2013
    • 1g Yamashita Y, Yasukawa T, Yoo WJ, Kitanosono T, Kobayashi S. Chem. Soc. Rev. 2018; 47: 4388

      For early seminal works in direct catalytic asymmteric aldol reactions, see:
    • 2a Yamada YM. A, Yoshikawa N, Sasai H, Shibasaki M. Angew. Chem., Int. Ed. Engl. 1997; 36: 1871
    • 2b Yoshikawa N, Yamada YM. A, Das J, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1999; 121: 4168
    • 2c List B, Lerner RA, Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395
    • 2d Trost BM, Ito H. J. Am. Chem. Soc. 2000; 122: 12003
    • 3a Arteaga FA, Liu Z, Brewitz L, Chen J, Sun B, Kumagai N, Shibasaki M. Org. Lett. 2016; 18: 2391
    • 3b Liu Z, Takeuchi T, Pluta R, Arteaga FA, Kumagai N, Shibasaki M. Org. Lett. 2017; 19: 710
    • 4a Yin L, Brewitz L, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2014; 136: 17958
    • 4b Brewitz L, Arteaga FA, Yin L, Alagiri K, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2015; 137: 15929
    • 4c Brewitz L, Kumagai N, Shibasaki M. J. Fluorine Chem. 2017; 194: 1
    • 4d Matsuzawa A, Noda H, Kumagai N, Shibasaki M. J. Org. Chem. 2017; 82: 8304
    • 4e Noda H, Amemiya F, Weidner K, Kumagai N, Shibasaki M. Chem. Sci. 2017; 8: 3260
    • 4f Brewitz L, Noda H, Kumagai N, Shibasaki M. Eur. J. Org. Chem. 2018; 714
    • 5a Sun Z, Weidner K, Kumagai N, Shibasaki M. Chem.–Eur. J. 2015; 21: 17574
    • 5b Weidner K, Sun Z, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2015; 54: 6236
  • 6 Sun B, Pluta R, Kumagai N, Shibasaki M. Org. Lett. 2018; 20: 526
  • 7 Sun B, Balaji PV, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2017; 139: 8295
  • 8 Weidner K, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2014; 53: 6150
    • 9a Kanai M, Kato N, Ichikawa E, Shibasaki M. Synlett 2005; 1491
    • 9b Yamamoto H, Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924
    • 9c Paull DH, Abraham CJ, Scerba MT, Alden-Danforth E, Lectka T. Acc. Chem. Res. 2008; 41: 655
    • 9d Acid Catalysis in Modern Organic Synthesis . Yamamoto H, Ishihara K. Wiley-VCH; Weinheim: 2008
    • 9e Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2011; 50: 4760
    • 9f Cooperative Catalysis . Peters R. Wiley-VCH; Weinheim: 2015
    • 10a Tsuda T, Yazawa T, Watanabe K, Fujii T, Saegusa T. J. Org. Chem. 1981; 46: 192
    • 10b Meyer EM, Gambarotta S, Floriani C, Chiesi-Villa A, Guastinit C. Organometallics 1989; 8: 1067
    • 10c Stollenz M, Meyer F. Organometallics 2012; 31: 7708
    • 11a Marques MM. Angew. Chem. Int. Ed. 2006; 45: 348
    • 11b Ting A, Schaus SE. Eur. J. Org. Chem. 2007; 5797
    • 11c Verkade JM, van Hemert LJ, Quaedflieg PJ, Rutjes FP. Chem. Soc. Rev. 2008; 37: 29
    • 11d Arrayas RG, Carretero JC. Chem. Soc. Rev. 2009; 38: 1940
    • 11e Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
  • 12 Zhang W, Basak A, Kosugi Y, Hoshino Y, Yamamoto H. Angew. Chem. Int. Ed. 2005; 44: 4389
    • 13a Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. J. Am. Chem. Soc. 1971; 93: 2325
    • 13b Nicolaou KC, Dai W.-M, Guy RK. Angew. Chem., Int. Ed. Engl. 1994; 33: 15
    • 13c Kingston DG. I. Chem. Commun. 2001; 867
    • 13d Horwitz SB. J. Nat. Prod. 2004; 67: 136
    • 13e Kingston DG, Newman DJ. Curr. Opin. Drug Discovery Dev. 2007; 10: 130
    • 14a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 14b Hunter L. Beilstein J. Org. Chem. 2010; 6: 38
    • 14c Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 14d Meanwell NA. J. Med. Chem. 2018; 61: 5822
  • 15 Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
  • 16 Zhang M, Kumagai N, Shibasaki M. Chem.–Eur. J. 2016; 22: 5525

    • For reviews, see:
    • 17a Methods and Applications of Cycloaddition Reactions in Organic Syntheses. Nishiwaki N. Wiley; Hoboken: 2014
    • 17b Klier L, Tur F, Poulsen PH, Jørgensen KA. Chem. Soc. Rev. 2017; 46: 1080
  • 18 Zhang M, Kumagai N, Shibasaki M. Chem.–Eur. J. 2017; 23: 12450
  • 19 For a review, see: Aidhen I, Balasubramaniam S. Synthesis 2008; 3707