CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 122-134
DOI: 10.1055/s-0037-1610379
short review
Copyright with the author

Palladium(0)-Catalyzed Difunctionalization of 1,3-Dienes: From Racemic to Enantioselective

Xiang Wu
a  Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. of China
,
b  Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China
c  Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. of China   Email: gonglz@ustc.edu.cn
› Author Affiliations
We are grateful for financial support from NSFC (21672197, 21672049).
Further Information

Publication History

Received: 17 October 2018

Accepted after revision: 18 October 2018

Publication Date:
15 November 2018 (eFirst)

  

Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

1,3-Dienes are easily accessible chemicals that participate in a series of reactions acting on the carbon–carbon double bonds. Catalytic difunctionalization of 1,3-dienes provides a wide scope of functionalized chemicals. Pd(0) catalysts provide a diverse set of principles for the creation of asymmetric catalytic reactions, which are initiated with the oxidative addition and then undergo insertion reaction with one of double bonds of the 1,3-diene to become a π-allyl palladium species that is reactive toward nucleophilic attack. This review summarizes typical advances on the Pd(0)-catalyzed difunctionalization of 1,3-dienes in recent decades, particularly emphasizing the concepts that enable the switch from a racemic reaction to an enantioselective version.

1 Introduction

2 Amination

3 Boration

4 Carbonation

5 Hydrogenation

6 Oxygenation

7 Silylation

8 Conclusion and Outlook

 
  • References

    • 1a Morrow NL. Environ. Health Perspect. 1990; 86: 7
    • 1b White WC. Chem.-Biol. Interact. 2007; 166: 10
    • 2a De Paolis M, Chataigner I, Maddaluno J. Top. Curr. Chem. 2012; 327: 87
    • 2b Olivares AM, Weix DJ. J. Am. Chem. Soc. 2018; 140: 2446
    • 2c Nguyen VT, Dang HT, Pham HH, Nguyen VD, Flores-Hansen C, Arman HD, Larionov OV. J. Am. Chem. Soc. 2018; 140: 8434
    • 2d Hu T.-J, Li M.-Y, Zhao Q, Feng C.-G, Lin G.-Q. Angew. Chem. Int. Ed. 2018; 57: 5871
    • 2e Fiorito D, Folliet S, Liu Y, Mazet C. ACS Catal. 2018; 8: 1392
    • 2f Al-Jawaheri Y, Turner M, Kimber MC. Synthesis 2018; 50: 2329
    • 2g Matsumoto K, Mizushina N, Yoshida M, Shindo M. Synlett 2017; 28: 2340
    • 2h Schmidt B, Audoersch S, Kunz O. Synthesis 2016; 48: 4509
    • 3a Eschenbrenner-Lux V, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2014; 53: 11146
    • 3b Sherburn M, Mackay E. Synthesis 2014; 47: 1
    • 4a Sigman MS, Werner EW. Acc. Chem. Res. 2012; 45: 874
    • 4b Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
    • 4c McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 4d Schultz DM, Wolfe JP. Synthesis 2012; 44: 351
    • 4e Xiong Y, Sun Y, Zhang G. Tetrahedron Lett. 2018; 59: 347
    • 4f Wu Z, Zhang W. Chin. J. Org. Chem. 2017; 37: 2250
  • 5 Han JW, Hayashi T. Tetrahedron: Asymmetry 2010; 21: 2193
  • 6 Patel BA, Dickerson JE, Heck RF. J. Org. Chem. 1978; 43: 5018
  • 7 Patel BA, Kao LC, Cortese NA, Minkiewicz JV, Heck RF. J. Org. Chem. 1979; 44: 918
    • 8a Heck RF. Acc. Chem. Res. 1979; 12: 146
    • 8b Stakem FG, Heck RF. J. Org. Chem. 1980; 45: 3584
  • 9 Oconnor JM, Stallman BJ, Clark WG, Shu AY. L, Spada RE, Stevenson TM, Dieck HA. J. Org. Chem. 1983; 48: 807
  • 10 Larock RC, Berriospena N, Narayanan K. J. Org. Chem. 1990; 55: 3447
  • 11 Chen S.-S, Meng J, Li Y.-H, Han Z.-Y. J. Org. Chem. 2016; 81: 9402
  • 12 Flubacher D, Helmchen G. Tetrahedron Lett. 1999; 40: 3867
  • 13 Grigg R, Sridharan V, Sukirthalingam S, Worakun T. Tetrahedron Lett. 1989; 30: 1139
  • 14 Kagechika K, Ohshima T, Shibasaki M. Tetrahedron 1993; 49: 1773
    • 15a Overman LE, Rosen MD. Angew. Chem. Int. Ed. 2000; 39: 4596
    • 15b Overman LE, Rosen MD. Tetrahedron 2010; 66: 6514
    • 16a Qin G, Li L, Li J, Huang H. J. Am. Chem. Soc. 2015; 137: 12490
    • 16b Zhang G, Gao B, Huang H. Angew. Chem. Int. Ed. 2015; 54: 7657
    • 16c Xie Y, Hu J, Xie P, Qian B, Huang H. J. Am. Chem. Soc. 2013; 135: 18327
    • 16d Xie Y, Hu J, Wang Y, Xia C, Huang H. J. Am. Chem. Soc. 2012; 134: 20613
  • 17 Liu Y, Xie Y, Wang H, Huang H. J. Am. Chem. Soc. 2016; 138: 4314
  • 18 Lucet D, Le Gall T, Mioskowski C. Angew. Chem. Int. Ed. 1998; 37: 2580
  • 19 Bar GL, Lloyd-Jones GC, Booker-Milburn KI. J. Am. Chem. Soc. 2005; 127: 7308
  • 20 Du H, Zhao B, Shi Y. J. Am. Chem. Soc. 2007; 129: 762
  • 21 Zhu Y, Cornwall RG, Du H, Zhao B, Shi Y. Acc. Chem. Res. 2014; 47: 3665
  • 22 Zhao B, Du H, Cui S, Shi Y. J. Am. Chem. Soc. 2010; 132: 3523
  • 23 Du H, Yuan W, Zhao B, Shi Y. J. Am. Chem. Soc. 2007; 129: 11688
  • 24 Xu L, Du H, Shi Y. J. Org. Chem. 2007; 72: 7038
  • 25 Xu L, Shi Y. J. Org. Chem. 2008; 73: 749
    • 26a Reznichenko AL, Nawara-Hultzsch AJ, Hultzsch KC. Top. Curr. Chem. 2014; 343: 191
    • 26b Huang L, Arndt M, Goossen K, Heydt H, Goossen LJ. Chem. Rev. 2015; 115: 259
    • 26c Coman SM, Parvulescu VI. Org. Process Res. Dev. 2015; 19: 1327
    • 27a Löber O, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 4366
    • 27b Johns AM, Utsunomiya M, Incarvito CD, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 1828
  • 28 Minami T, Okamoto H, Ikeda S, Tanaka R, Ozawa F, Yoshifuji M. Angew. Chem. Int. Ed. 2001; 40: 4501
  • 29 Banerjee D, Junge K, Beller M. Org. Chem. Front. 2014; 1: 368
  • 30 Adamson NJ, Hull E, Malcolmson SJ. J. Am. Chem. Soc. 2017; 139: 7180
  • 31 Park S, Malcolmson SJ. ACS Catal. 2018; 8: 8468
    • 32a Shimizu Y, Kanai M. Tetrahedron Lett. 2014; 55: 3727
    • 32b Lazreg F, Nahra F, Cazin CS. J. Coord. Chem. Rev. 2015; 293-294: 48
    • 32c Semba K, Fujihara T, Terao J, Tsuji Y. Tetrahedron 2015; 71: 2183
    • 32d Neeve EC, Geier SJ, Mkhalid IA, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
  • 33 Wu JY, Moreau B, Ritter T. J. Am. Chem. Soc. 2009; 131: 12915
    • 34a Sasaki Y, Zhong C, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 1226
    • 34b Semba K, Shinomiya M, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2013; 19: 7125
    • 34c Li X, Meng F, Torker S, Shi Y, Hoveyda AH. Angew. Chem. Int. Ed. 2016; 55: 9997
    • 34d Jiang L, Cao P, Wang M, Chen B, Wang B, Liao J. Angew. Chem. Int. Ed. 2016; 55: 13854
    • 34e Sardini SR, Brown MK. J. Am. Chem. Soc. 2017; 139: 9823
    • 34f Smith KB, Huang Y, Brown MK. Angew. Chem. Int. Ed. 2018; 57: 6146
  • 35 Fiorito D, Mazet C. ACS Catal. 2018; 8: 9382
  • 36 Satoh M, Nomoto Y, Miyaura N, Suzuki A. Tetrahedron Lett. 1989; 30: 3789
  • 37 Tao Z.-L, Adili A, Shen H.-C, Han Z.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2016; 55: 4322
    • 38a Shen H.-C, Wang P.-S, Tao Z.-L, Han Z.-Y, Gong L.-Z. Adv. Synth. Catal. 2017; 359: 2383
    • 38b Zhang Z.-J, Tao Z.-L, Arafate A, Gong L.-Z. Acta Chim. Sinica 2017; 75: 1196
    • 39a Uno M, Takahashi T, Takahashi S. J. Chem. Soc., Chem. Commun. 1987; 785
    • 39b Uno M, Takahashi T, Takahashi S. J. Chem. Soc., Perkin Trans. 1 1990; 647
  • 40 Ohshima T, Kagechika K, Adachi M, Sodeoka M, Shibasaki M. J. Am. Chem. Soc. 1996; 118: 7108
  • 41 Larock RC, Fried CA. J. Am. Chem. Soc. 1990; 112: 5882
  • 42 Larock RC, Berriospena NG, Fried CA, Yum EK, Tu C, Leong W. J. Org. Chem. 1993; 58: 4509
  • 43 Wu X, Chen SS, Zhang L, Wang HJ, Gong LZ. Chem. Commun. 2018; 9595
  • 44 Liao L, Jana R, Urkalan KB, Sigman MS. J. Am. Chem. Soc. 2011; 133: 5784
  • 45 McCammant MS, Sigman MS. Chem. Sci. 2015; 6: 1355
  • 46 Xu L, Zhang X, McCammant MS, Sigman MS, Wu Y.-D, Wiest O. J. Org. Chem. 2016; 81: 7604
  • 47 Stokes BJ, Liao L, de Andrade AM, Wang Q, Sigman MS. Org. Lett. 2014; 16: 4666
  • 48 Wu X, Lin HC, Li ML, Li LL, Han ZY, Gong LZ. J. Am. Chem. Soc. 2015; 137: 13476
  • 49 Yoshida M, Sugimoto K, Hara M. Org. Lett. 2004; 6: 1979
  • 50 Luo L, Zheng H, Liu J, Wang H, Wang Y, Luan X. Org. Lett. 2016; 18: 2082
  • 51 Adamson NJ, Wilbur KC. E, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 2761
  • 52 Saini V, O’Dair M, Sigman MS. J. Am. Chem. Soc. 2015; 137: 608
  • 53 Yeh MC. P, Tsao WC, Tu LH. Organometallics 2005; 24: 5909
  • 54 Kagechika K, Shibasaki M. J. Org. Chem. 1991; 56: 4093
  • 55 Wang P.-S, Shen M.-L, Gong L.-Z. Synthesis 2017; 50: 956
    • 56a Park HS, Han JW, Shintani R, Hayashi T. Tetrahedron: Asymmetry 2013; 24: 418
    • 56b Park H.-S, Shin HM, Namgung S, Han JW. Bull. Korean Chem. Soc. 2014; 35: 2613