Synthesis 2018; 50(24): 4746-4764
DOI: 10.1055/s-0037-1610289
short review
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of Tetrahydrofuran Lignans

Darunee Soorukram*
Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand   eMail: darunee.soo@mahidol.ac.th
,
Manat Pohmakotr
,
,
Vichai Reutrakul
› Institutsangaben
The authors acknowledge financial support from the Thailand Research Fund (RSA6180025 and IRN58W0005), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), and the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative.
Weitere Informationen

Publikationsverlauf

Received: 31. Juli 2018

Accepted after revision: 28. August 2018

Publikationsdatum:
02. Oktober 2018 (online)


Abstract

This short review aims to summarize the reports on stereoselective synthesis of naturally occurring tetrahydrofuran lignans published during the period of 2006 to 2018. The stereoselective construction of non-natural tetrahydrofuran frameworks is not included in this review.

1 Introduction

2 Stereoselective Synthesis of 2,5-Diaryltetrahydrofuran (CL5-a)

2.1 Synthesis of CL5-a via Friedel–Crafts Arylation or Nucleophilic Addition/Reduction of γ-Butyrolactones

2.2 Synthesis of CL5-a via Intramolecular Cyclization of 1,4-Diaryl­butanediols

2.3 Synthesis of CL5-a via Diastereoselective Hydrogenation of Furan Derivatives

2.4 Synthesis of CL5-a via Cycloaddition Reaction of Substituted Cyclopropane­ Derivatives

3 Stereoselective Synthesis of 2-Aryl-4-benzyltetrahydrofuran (CL5-b)

4 Stereoselective Synthesis of 3,4-Dibenzyltetrahydrofuran (CL5-c)

5 Conclusions

 
  • References

    • 1a Pan J.-Y. Chen S.-L. Yang M.-H. Wu J. Sinkkonen J. Zou K. Nat. Prod. Rep. 2009; 26: 1251
    • 1b Teponno RB. Kusari S. Spiteller M. Nat. Prod. Rep. 2016; 33: 1044
    • 1c Zhai H. Nakatsukasa M. Mitsumoto Y. Fukuyama Y. Planta Med. 2004; 70: 598
    • 1d Zhai H. Inoue T. Moriyama M. Esumi T. Mitsumoto Y. Fukuyama Y. Biol. Pharm. Bull. 2005; 28: 289
    • 2a Davin LB. Wang H.-B. Crowell AL. Bedgar DL. Martin DM. Sarkanen S. Lewis NG. Science (Washington, D. C.) 1997; 275: 362
    • 2b Lignin and Lignan Biosynthesis, ACS Symposium Series 697 . Lewis NG. Sarkanen S. American Chemical Society; Washington: 1998

    • For selected reviews on biosynthesis of lignans, see:
    • 2c Davin LB. Lewis NG. Phytochem. Rev. 2003; 2: 257
    • 2d Dixon RA. Reddy MS. S. Phytochem. Rev. 2003; 2: 289
    • 2e Umezawa T. Phytochem. Rev. 2003; 2: 371

      See, for example:
    • 3a Ramos CS. Linnert HV. de Moraes MM. do Amaral JH. Yamaguchi LF. Kato MJ. RSC Adv. 2017; 7: 46932
    • 3b Cui H. Xu B. Wu T. Xu J. Yuan Y. Gu Q. J. Nat. Prod. 2014; 77: 100

      See, for example:
    • 4a Akiyama K. Yamauchi S. Nakato T. Maruyama M. Sugahara T. Kishida T. Biosci. Biotechnol. Biochem. 2007; 71: 1028
    • 4b Yamauchi S. Nakayama K. Nishiwaki H. Shuto Y. Bioorg. Med. Chem. Lett. 2014; 24: 4798
    • 4c Wukirsari T. Nishiwaki H. Nishi K. Sugahara T. Akiyama K. Kishida T. Yamauchi S. Biosci. Biotechnol. Biochem. 2016; 80: 669
    • 4d See also refs. 24a and 27.

      See, for example:
    • 5a Ahmed R. Schreiber FG. Stevenson R. Williams JR. Yeo HM. Tetrahedron 1976; 32: 1339
    • 5b Stevenson R. Williams JR. Tetrahedron 1977; 33: 285
    • 5c Yoda H. Mizutani M. Takabe K. Tetrahedron Lett. 1999; 40: 4701
    • 5d Akindele T. Marsden SP. Cumming JG. Org. Lett. 2005; 7: 3685
    • 5e Yamauchi S. Okazaki M. Akiyama K. Sugahara T. Kishida T. Kashiwagi T. Org. Biomol. Chem. 2005; 3: 1670
    • 5f Jahn U. Rudakov D. Org. Lett. 2006; 8: 4481
    • 5g Schatz PF. Ralph J. Lu F. Guzei IA. Bunzel M. Org. Biomol. Chem. 2006; 4: 2801
  • 6 Esumi T. Hojyo D. Zhai H. Fukuyama Y. Tetrahedron Lett. 2006; 47: 3979
    • 7a Evans DA. Bartroli J. Shih TL. J. Am. Chem. Soc. 1981; 103: 2127
    • 7b Evans DA. Nelson JV. Vogel E. Taber TR. J. Am. Chem. Soc. 1981; 103: 3099
    • 7c Evans DA. Ennis MD. Mathre DJ. J. Am. Chem. Soc. 1982; 104: 1737
    • 7d Evans DA. Tedrow JS. Shaw JT. Downey CW. J. Am. Chem. Soc. 2002; 124: 392

    • For a recent review, see:
    • 7e Heravi MM. Zadsirjan V. Tetrahedron: Asymmetry 2013; 24: 1149

    • See also:
    • 7f Danda H. Hansen MM. Heathcock CH. J. Org. Chem. 1990; 55: 173
    • 7g Walker MA. Heathcock CH. J. Org. Chem. 1991; 56: 5747
    • 7h Crimmins MT. King BW. Tabet EA. Chaudhary K. J. Org. Chem. 2001; 66: 894
  • 8 Tebbe FN. Parshall GW. Reddy GS. J. Am. Chem. Soc. 1978; 100: 3611
  • 9 Kim H. Wooten CM. Park Y. Hong J. Org. Lett. 2007; 9: 3965
    • 10a Hanessian S. Reddy GJ. Chahal N. Org. Lett. 2006; 8: 5477
    • 10b Aldous DJ. Dalençon AJ. Steel PG. J. Org. Chem. 2003; 68: 9159
    • 10c See also ref. 20.

      See, for example:
    • 11a Bear TJ. Shaw JT. Woerpel KA. J. Org. Chem. 2002; 67: 2056
    • 11b Smith DM. Tran MB. Woerpel KA. J. Am. Chem. Soc. 2003; 125: 14149
  • 12 Kim H. Kasper AC. Moon EJ. Park Y. Wooten CM. Dewhirst MW. Hong J. Org. Lett. 2009; 11: 89
  • 13 Kaoud TS. Park H. Mitra S. Yan C. Tseng C.-C. Shi Y. Jose J. Taliaferro JM. Lee K. Ren P. Hong J. Dalby KN. ACS Chem. Biol. 2012; 7: 1873
  • 14 Xue P. Wang L.-P. Jiao X.-Z. Jiang Y.-J. Xiao Q. Luo Z.-G. Xie P. Liang X.-T. J. Asian Nat. Prod. Res. 2009; 11: 281
    • 15a Matcha K. Ghosh S. Tetrahedron Lett. 2008; 49: 3433

    • See also:
    • 15b Nakato T. Tago R. Akiyama K. Maruyama M. Sugahara T. Kishida T. Yamauchi S. Biosci. Biotechnol. Biochem. 2008; 72: 197
    • 15c Nakato T. Yamauchi S. Tago R. Akiyama K. Maruyama M. Sugahara T. Kishida T. Koba Y. Biosci. Biotechnol. Biochem. 2009; 73: 1608
  • 16 Matcha K. Ghosh S. Tetrahedron Lett. 2010; 51: 6924
  • 17 Hazra S. Hajra S. RSC Adv. 2013; 3: 22834
  • 18 Li H. Zhang Y. Xie X. Ma H. Zhao C. Zhao G. She X. Org. Lett. 2014; 16: 4440
  • 19 Henrion S. Macé A. Vallejos MM. Roisnel T. Carboni B. Villalgordo JM. Carreaux F. Org. Biomol. Chem. 2018; 16: 1672
  • 20 Hanessian S. Reddy GJ. Synlett 2007; 475
    • 21a Rye CE. Barker D. J. Org. Chem. 2011; 76: 6636
    • 21b Rye CE. Barker D. Synlett 2009; 3315
  • 22 Barker D. Dickson B. Dittrich N. Rye CE. Pure Appl. Chem. 2012; 84: 1557
  • 23 Chaimanee S. Pohmakotr M. Kuhakarn C. Reutrakul V. Soorukram D. Org. Biomol. Chem. 2017; 15: 3985
    • 24a Harada K. Kubo M. Horiuchi H. Ishii A. Esumi T. Hioki H. Fukuyama Y. J. Org. Chem. 2015; 80: 7076
    • 24b Harada K. Kubo N. Tanabe K. Kubo M. Esumi T. Hioki H. Fukuyama Y. Heterocycles 2011; 82: 1127
    • 24c Fukuyama Y. Harada K. Esumi T. Hojyo D. Kujime Y. Kubo N. Kubo M. Hioki H. Heterocycles 2008; 76: 551
    • 24d Harada K. Horiuchi H. Tanabe K. Carter RG. Esumi T. Kubo M. Hioki H. Fukuyama Y. Tetrahedron Lett. 2011; 52: 3005
  • 25 Brown DS. Ley SV. Tetrahedron Lett. 1988; 29: 4869
  • 26 Jagtap PR. Císařová I. Jahn U. Org. Biomol. Chem. 2018; 16: 750
  • 27 Harada K. Zaha K. Bando R. Irimaziri R. Kubo M. Koriyama Y. Fukuyama Y. Eur. J. Med. Chem. 2018; 148: 86
    • 28a Paal C. Chem. Ber. 1884; 17: 2756
    • 28b Knorr L. Chem. Ber. 1884; 17: 2863
    • 28c Sundberg RJ. In Comprehensive Heterocyclic Chemistry . Vol. 4. Katritzky AR. Rees CW. Pergamon Press; Oxford: 1984: 329-330
    • 28d Amarnath V. Anthony DC. Amarnath K. Valentine WM. Wetterau LA. Graham DG. J. Org. Chem. 1991; 56: 6924
    • 28e Amarnath V. Amarnath K. J. Org. Chem. 1995; 60: 301

    • For recent reviews, see:
    • 28f Portilla Zuniga OM. Sathicq AG. Martinez Zambrano JJ. Romanelli GP. Curr. Org. Synth. 2017; 14: 865
    • 28g Khaghaninejad S. Heravi MM. Adv. Heterocycl. Chem. 2014; 111: 95
    • 29a Martinet S. Méou A. Brun P. Eur. J. Org. Chem. 2009; 2306

    • See also:
    • 29b Nishiwaki H. Nakayama K. Shuto Y. Yamauchi S. J. Agric. Food Chem. 2014; 62: 651
    • 30a Sanders SD. Ruiz-Olalla A. Johnson JS. Chem. Commun. 2009; 5135

    • See also:
    • 30b Yang G. Shen Y. Li K. Sun Y. Hua Y. J. Org. Chem. 2011; 76: 229
  • 31 Shen Y. Yang P.-F. Yang G. Chen W.-L. Chai Z. Org. Biomol. Chem. 2018; 16: 2688
    • 32a Krapcho AP. Glynn GA. Grenon BJ. Tetrahedron Lett. 1967; 8: 215
    • 32b Krapcho AP. Jahngen EG. E. Jr. Lovey AJ. Short FW. Tetrahedron Lett. 1974; 15: 1091
    • 32c Krapcho AP. Weimaster JF. Eldridge JM. Jahngen EG. E. Jr. Lovey AJ. Stephens WP. J. Org. Chem. 1978; 43: 138

    • For a recent review, see:
    • 32d Krapcho AP. Ciganek E. Org. React. 2013; 81: 1
  • 33 Takahashi M. Takada K. Matsuura D. Takabe K. Yoda H. Heterocycles 2007; 71: 2113
  • 34 Nasveschuk CG. Rovis T. Synlett 2008; 126
    • 35a Heck RF. J. Am. Chem. Soc. 1969; 91: 6707
    • 35b Dieck HA. Heck RF. J. Am. Chem. Soc. 1974; 96: 1133

    • For recent reviews, see:
    • 35c Roy D. Uozumi Y. Adv. Synth. Catal. 2018; 360: 602
    • 35d Yang J. Zhao H.-W. He J. Zhang C.-P. Catalysts 2018; 8: 23
    • 35e Biffis A. Centomo P. Del Zotto A. Zecca M. Chem. Rev. 2018; 118: 2249
    • 35f Christoffel F. Ward TR. Catal. Lett. 2018; 148: 489
  • 36 Mondière A. Pousse G. Bouyssi D. Balme G. Eur. J. Org. Chem. 2009; 4225
    • 37a Pandey G. Luckorse S. Budakoti A. Puranik VG. Tetrahedron Lett. 2010; 51: 2975

    • See, also:
    • 37b Nakato T. Yamauchi S. J. Nat. Prod. 2007; 70: 1588
  • 38 Albertson AK. F. Lumb J.-P. Angew. Chem. Int. Ed. 2015; 54: 2204
  • 39 Pohjoispää M. Wähälä K. Molecules 2013; 18: 13124
  • 40 Fu W. Nie M. Wang A. Cao Z. Tang W. Angew. Chem. Int. Ed. 2015; 54: 2520
    • 41a Barton DH. R. McCombie SW. J. Chem. Soc., Perkin Trans. 1 1975; 1574

    • For a recent review, see:
    • 41b McCombie SW. Quiclet-Sire B. Zard SZ. Tetrahedron 2018; 74: 4969