Synthesis 2018; 50(13): 2463-2472
DOI: 10.1055/s-0037-1609731
short review
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Vinylogous Reactions of 3-Alkylidene Oxindoles

Renato Dalpozzo*
Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via Bucci, 87036 Arcavacata di Rende (Cs), Italy   Email: [email protected]   Email: [email protected]
,
Raffaella Mancuso*
Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via Bucci, 87036 Arcavacata di Rende (Cs), Italy   Email: [email protected]   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 08 March 2018

Accepted after revision: 09 April 2018

Publication Date:
30 May 2018 (online)


Abstract

Oxindoles represent an important class of bioactive compounds and synthetic derivatives found in many natural products. Most of these compounds are chiral molecules and the challenge of their asymmetric synthesis has fascinated many research groups. In particular, the creation of chiral centers out of the oxindole ring by vinylogous addition to 3-alkylidene-substituted oxindoles (3-alkylidene-1,3-dihydro-2H-indol-2-ones) has emerged in recent years. This review aims to give an overview of this topic.

1 Introduction

2 Aldol and Mannich Reactions

3 Addition to Unsaturated Carbonyl Compounds

4 Addition to Nitroalkenes

5 Miscellaneous

6 Conclusion

 
  • References

  • 1 Bergman J. Adv. Heterocycl. Chem. 2015; 117: 1-81

    • For recent reviews, see:
    • 2a Dalpozzo R. Adv. Synth. Catal. 2017; 359: 1772
    • 2b Yu B. Xing H. Yu D.-Q. Liu H.-M. Beilstein J. Org. Chem. 2016; 12: 1000
    • 2c Cao Z.-Y. Zhou J. Org. Chem. Front. 2015; 2: 849
    • 2d Xiao Y. Zhou Y. Wang J. Wang J. Liu H. Chin. J. Org. Chem. 2015; 35: 2035
    • 2e Yu JS. Zhou F. Liu YL. Zhou J. Synlett 2015; 26: 2491
    • 2f Voituriez A. Marinetti A. Gicquel M. Synlett 2015; 26: 142
    • 2g Kaur J. Chimni SS. Mahajana S. Kumar A. RSC Adv. 2015; 5: 52481
    • 2h Cheng D. Ishihara Y. Tan B. Barbas CF. III. ACS Catal. 2014; 4: 743
    • 2i Macaev FZ. Sucman NS. Boldescu VV. Russ. Chem. Bull. Int. Ed. 2014; 63: 15
    • 2j Santos MM. M. Tetrahedron 2014; 70: 9735
    • 2k Shirakawa S. Maruoka K. Tetrahedron Lett. 2014; 55: 3833
    • 2l Cao ZY. Wang YH. Zeng XP. Zhou J. Tetrahedron Lett. 2014; 55: 2571
    • 2m Hong L. Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 2n Chauhan P. Chimni SS. Tetrahedron: Asymmetry 2013; 24: 343
    • 2o Moyano A. Companyò X. Stud. Nat. Prod. Chem. 2013; 40: 71
    • 2p Mohammadi S. Heiran R. Herrera RP. Marqués-Lòpez E. ChemCatChem 2013; 5: 2131
    • 2q Liu Y.-L. Zhu F. Wang C.-H. Zhou J. Chin. J. Org. Chem. 2013; 33: 1595
    • 2r Kumar A. Chimni SS. RSC Adv. 2012; 2: 9748
    • 2s Shen K. Liu X. Lin L. Feng X. Chem. Sci. 2012; 3: 327
    • 2t Dalpozzo R. Bartoli G. Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
    • 2u Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 2v Singh GS. Desta ZY. Chem. Rev. 2012; 112: 6104
    • 2w Ball-Jones NR. Badille JJ. Franz AK. Org. Biomol. Chem. 2012; 10: 5165
    • 3a Fuson RC. Chem. Rev. 1935; 16: 1

    • For a recent review on asymmetric vinylogous reactions see:
    • 3b Yin Y. Jiang Z. ChemCatChem 2017; 9: 4306
  • 4 Horner L. Justus Liebigs Ann. Chem. 1941; 548: 117
  • 5 Rassu G. Zambrano V. Tanca R. Sartori A. Battistini L. Zanardi F. Curti C. Casiraghi G. Eur. J. Org. Chem. 2012; 466
  • 6 Curti C. Sartori A. Battistini L. Brindani N. Rassu G. Pelosi G. Lodola A. Mor M. Casiraghi G. Zanardi F. Chem. Eur. J. 2015; 21: 6433
  • 7 Han J.-L. Chang C.-H. Chem. Commun. 2016; 52: 2322
  • 8 Han J.-L. Tsai Y.-D. Chang C.-H. Adv. Synth. Catal. 2017; 359: 4043
  • 9 Kumar K. Jaiswal MK. Singha RP. Adv. Synth. Catal. 2017; 359: 4136
  • 10 Ranieri B. Sartori A. Curti C. Battistini L. Rassu G. Pelosi G. Casiraghi G. Zanardi F. Org. Lett. 2014; 16: 932
  • 11 Liu Y. Yang Y. Huang Y. Xu X.-H. Qing F.-L. Synlett 2015; 26: 67
  • 12 Shi M.-L. Zhan G. Du W. Chen Y.-C. Acta Chim. Sin. 2017; 75: 998
  • 13 Feng J. Li X. Cheng J.-P. J. Org. Chem. 2017; 82: 1412
  • 14 Xiao X. Mei H. Chen Q. Zhao X. Lin L. Liu X. Feng X. Chem. Commun. 2015; 51: 580
  • 15 Mei H. Lin L. Wang L. Dai L. Liu X. Feng X. Chem. Commun. 2017; 53: 8763
  • 16 Xie K.-X. Zhang Z.-P. Li X. Org. Lett. 2017; 19: 6708
  • 17 Chen Y.-R. Zhan G. Du W. Chen Y.-C. Adv. Synth. Catal. 2016; 358: 3759
  • 18 Zhan G. Shi M.-L. Lin W.-J. Ouyang Q. Du W. Chen Y.-C. Chem. Eur. J. 2017; 23: 6286
  • 19 Peňaška T. Ormandyová K. Mečiarová M. Filo J. Šebesta R. New J. Chem. 2017; 41: 5506
  • 20 Curti C. Rassu G. Zambrano V. Pinna L. Pelosi G. Sartori A. Battistini L. Zanardi F. Casiraghi G. Angew. Chem. Int. Ed. 2012; 51: 6200
  • 21 Rassu G. Zambrano V. Pinna L. Curti C. Battistini L. Sartori A. Pelosi G. Casiraghi G. Adv. Synth. Catal. 2013; 355: 1881
  • 22 Chen Q. Wang G. Jiang X. Xu Z. Lin L. Wang R. Org. Lett. 2014; 16: 1394
  • 23 Zhong Y. Ma S. Xu Z. Chang M. Wang R. RSC Adv. 2014; 4: 49930
  • 24 Zheng C. Wang H.-F. Chen W.-Q. Chen W.-X. Chen F.-E. Asian J. Org. Chem. 2015; 4: 619
  • 25 Feng J. Li X. J. Org. Chem. 2017; 82: 7317
  • 26 Curti C. Battistini L. Sartori A. Rassu G. Pelosi G. Lombardo M. Zanardi F. Adv. Synth. Catal. 2018; 360: 711
  • 27 Di Iorio N. Righi P. Ranieri S. Mazzanti A. Margutta RG. Bencivenni G. J. Org. Chem. 2015; 80: 7158
  • 28 Tian L. Hu X.-Q. Li Y.-H. Xu P.-F. Chem. Commun. 2013; 49: 7213
  • 29 Sun Q. Li X. Su J. Zhao L. Ma M. Zhu Y. Zhao Y. Zhu R. Yan W. Wang K. Wang R. Adv. Synth. Catal. 2015; 357: 3187
  • 30 Zheng C. Chen W.-X. Chen F.-E. Asian J. Org. Chem. 2015; 4: 1044
  • 31 Feng J. Li X. Cheng J.-P. Chem. Commun. 2015; 51: 14342
  • 32 Li X. Su J. Liu Z. Zhu Y. Dong Z. Qiu S. Wang J. Lin L. Shen Z. Yan W. Wang K. Wang R. Org. Lett. 2016; 18: 956
  • 33 Jadhav AP. Ali A. Singh RP. Adv. Synth. Catal. 2017; 359: 1508