Synthesis 2019; 51(02): 359-370 DOI: 10.1055/s-0037-1609639
© Georg Thieme Verlag Stuttgart · New York
Organocatalytic Group Transfer Reactions with Hypervalent Iodine Reagents
Manoj K. Ghosh
a
Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
,
Adam A. Rajkiewicz
a
Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
,
a
Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
› Author Affiliations We acknowledge the financial support from the National Science Centre Poland (grant no. 2016/22/E/ST5/00566).
Abstract
In recent years, a plethora of synthetic methods that employ hypervalent iodine compounds donating an atom or a group of atoms to an acceptor molecule have been developed. Several of these transformations utilize organocatalysis, which complements well the economic and environmental advantages offered by iodine reagents. This short review provides a systematic survey of the organocatalytic approaches that have been used to promote group transfer from hypervalent iodine species. It covers both the reactions in which an organocatalyst is applied to activate the acceptor, as well as those that exploit the organocatalytic activation of the hypervalent iodine reagent itself.
1 Introduction
2 Organocatalytic Activation of Acceptor
2.1 Amine Catalysis via Enamine and Unsaturated Iminium Formation
2.2 NHC Catalysis via Acyl Anion Equivalent and Enolate Formation
2.3 Chiral Cation Directed Catalysis and Brønsted Base Catalysis via Pairing with Stabilized Enolates
3 Organocatalytic Activation of Hypervalent Iodine Reagent
3.1 Brønsted and Lewis Acid Catalysis
3.2 Lewis Base Catalysis
3.3 Radical Reactions with Organic Promoters and Catalysts
4 Summary and Outlook
Key words
hypervalent iodine -
organocatalysis -
group transfer reagents -
metal-free reactions -
synthetic methodology
References
1a
Varvoglis A.
Tetrahedron 2010; 66: 5739
1b
Küpper FC,
Feiters MC,
Olofsson B,
Kaiho T,
Yanagida S,
Zimmermann MB,
Carpenter LJ,
Luther GW,
Lu Z,
Jonsson M,
Kloo L.
Angew. Chem. Int. Ed. 2011; 50: 11598
2a
Zhdankin VV.
Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. Wiley; Chichester: 2013
2b
Topics in Current Chemistry
. Vol. 373.
Wirth T.
Springer; Switzerland: 2016
2c
Yoshimura A,
Zhdankin VV.
Chem. Rev. 2016; 116: 3328
3
Iodine Chemistry and Applications
.
Kaiho T.
Wiley; Hoboken: 2015
4
Yusubov MS,
Zhdankin VV.
Curr. Org. Synth. 2012; 9: 247
5a
Merritt EA,
Olofsson B.
Angew. Chem. Int. Ed. 2009; 48: 9052
5b
Yusubov MS,
Maskaev AV,
Zhdankin VV.
ARKIVOC 2011; (i): 370
5c
Merritt EA,
Olofsson B.
Synthesis 2011; 517
5d
Brand JP,
Gonzalez DF,
Nicolai S,
Waser J.
Chem. Commun. 2011; 47: 102
5e
Dong D.-Q,
Hao S.-H,
Wang Z.-L,
Chen C.
Org. Biomol. Chem. 2014; 12: 4278
5f
Romero RM,
Wöste TH,
Muñiz K.
Chem. Asian J. 2014; 9: 972
5g
Kaschel J,
Werz DB.
Angew. Chem. Int. Ed. 2015; 54: 8876
5h
Charpentier J,
Früh N,
Togni A.
Chem. Rev. 2015; 115: 650
5i
Li Y,
Hari DP,
Vita MV,
Waser J.
Angew. Chem. Int. Ed. 2016; 55: 4436
5j
Kohlhepp SV,
Gulder T.
Chem. Soc. Rev. 2016; 45: 6270
5k
Yusubov MS,
Yoshimura A,
Zhdankin VV.
ARKIVOC 2016; (i): 342
5l
Lauriers AJ.-D,
Legault CY.
Asian J. Org. Chem. 2016; 5: 1078
5m
Fañanás-Mastral M.
Synthesis 2017; 49: 1905
5n
Caramenti P,
Waser J.
Helv. Chim. Acta 2017; 100: e1700221
5o
Chatterjee N,
Goswami A.
Eur. J. Org. Chem. 2017; 3023
5p
Muñiz K.
Acc. Chem. Res. 2018; 51: 1507
6
Sousa e Silva F,
Tierno A,
Wengryniuk S.
Molecules 2017; 22: 780
7
Sreenithya A,
Surya K,
Sunoj RB.
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017; 7: e1299
8a
Dohi T,
Kita Y.
Chem. Commun. 2009; 2073
8b
Parra A,
Reboredo S.
Chem. Eur. J. 2013; 19: 17244
8c
Harned AM.
Tetrahedron Lett. 2014; 55: 4681
8d
Berthiol F.
Synthesis 2015; 47: 587
8e
Narayan R,
Manna S,
Antonchick AP.
Synlett 2015; 26: 1785
8f
Yusubov MS,
Zhdankin VV.
Resour.-Effic. Technol. 2015; 1: 49
8g
Fujita M.
Tetrahedron Lett. 2017; 58: 4409
9a
Waser M.
In Asymmetric Organocatalysis in Natural Product Syntheses. Springer; Vienna: 2012: 7
9b Science of Synthesis: Asymmetric Organocatalysis 1: Lewis Base and Acid Catalysts.
List B,
Maruoka K.
Thieme; Stuttgart: 2012
10
Engqvist M,
Casas J,
Sundén H,
Ibrahem I,
Córdova A.
Tetrahedron Lett. 2005; 46: 2053
11
Allen AE,
MacMillan DW. C.
J. Am. Chem. Soc. 2010; 132: 4986
12a
Allen AE,
MacMillan DW. C.
J. Am. Chem. Soc. 2011; 133: 4260
12b
Skucas E,
MacMillan DW. C.
J. Am. Chem. Soc. 2012; 134: 9090
13
Wang Z,
Li X,
Huang Y.
Angew. Chem. Int. Ed. 2013; 52: 14219
14
Wang Z,
Li L,
Huang Y.
J. Am. Chem. Soc. 2014; 136: 12233
15
Lee S,
MacMillan DW. C.
Tetrahedron 2006; 62: 11413
16
Flanigan DM,
Romanov-Michailidis F,
White NA,
Rovis T.
Chem. Rev. 2015; 115: 9307
17a
Bugaut X.
In
Comprehensive Organic Synthesis
.
Knochel P,
Molander GA.
Elsevier; Amsterdam: 2014. 2nd ed. 424
17b
Gravel M,
Holmes JM.
In
Comprehensive Organic Synthesis
.
Knochel P,
Molander GA.
Elsevier; Amsterdam: 2014. 2nd ed. 1384
18
Toh QY,
McNally A,
Vera S,
Erdmann N,
Gaunt MJ.
J. Am. Chem. Soc. 2013; 135: 3772
19
Rajkiewicz AA,
Kalek M.
Org. Lett. 2018; 20: 1906
20
Gelat F,
Patra A,
Pannecoucke X,
Biju AT,
Poisson T,
Besset T.
Org. Lett. 2018; 20: 3897
21
Yang W,
Ma D,
Zhou Y,
Dong X,
Lin Z,
Sun J.
Angew. Chem. Int. Ed. 2018; 57: 12097
22a Science of Synthesis: Asymmetric Organocatalysis 2: Brønsted Base and Acid Catalysts, and Additional Topics.
List B,
Maruoka K.
Thieme; Stuttgart: 2012
22b
Brak K,
Jacobsen EN.
Angew. Chem. Int. Ed. 2013; 52: 534
22c
Shirakawa S,
Maruoka K.
Angew. Chem. Int. Ed. 2013; 52: 4312
22d
Schörgenhumer J,
Tiffner M,
Waser M.
Beilstein J. Org. Chem. 2017; 13: 1753
22e
Teng B,
Lim WC,
Tan C.-H.
Synlett 2017; 28: 1272
23a
Fernández González D,
Brand JP,
Waser J.
Chem. Eur. J. 2010; 16: 9457
23b
Fernández González D,
Brand JP,
Mondière R,
Waser J.
Adv. Synth. Catal. 2013; 355: 1631
24
Wu X,
Shirakawa S,
Maruoka K.
Org. Biomol. Chem. 2014; 12: 5388
25
Kamlar M,
Putaj P,
Veselý J.
Tetrahedron Lett. 2013; 54: 2097
26
Kamlar M,
Císařová I,
Veselý J.
Org. Biomol. Chem. 2015; 13: 2884
27a
Chowdhury R,
Schörgenhumer J,
Novacek J,
Waser M.
Tetrahedron Lett. 2015; 56: 1911
27b
Tiffner M,
Stockhammer L,
Schörgenhumer J,
Röser K,
Waser M.
Molecules 2018; 23: 1142
28
Wang X,
Yang T,
Cheng X,
Shen Q.
Angew. Chem. Int. Ed. 2013; 52: 12860
29
Vinogradova EV,
Müller P,
Buchwald SL.
Angew. Chem. Int. Ed. 2014; 53: 3125
30a
Akiyama T,
Mori K.
Chem. Rev. 2015; 115: 9277
30b
Min C,
Seidel D.
Chem. Soc. Rev. 2017; 46: 5889
30c
Merad J,
Lalli C,
Bernadat G,
Maury J,
Masson G.
Chem. Eur. J. 2018; 24: 3925
31
Niedermann K,
Früh N,
Vinogradova E,
Wiehn MS,
Moreno A,
Togni A.
Angew. Chem. Int. Ed. 2011; 50: 1059
32
Niedermann K,
Früh N,
Senn R,
Czarniecki B,
Verel R,
Togni A.
Angew. Chem. Int. Ed. 2012; 51: 6511
33
Nagata T,
Matsubara H,
Kiyokawa K,
Minakata S.
Org. Lett. 2017; 19: 4672
34
Bhattarai B,
Tay J.-H,
Nagorny P.
Chem. Commun. 2015; 51: 5398
35a
Petersen TB,
Khan R,
Olofsson B.
Org. Lett. 2011; 13: 3462
35b
Jalalian N,
Petersen TB,
Olofsson B.
Chem. Eur. J. 2012; 18: 14140
36
Saito M,
Kobayashi Y,
Tsuzuki S,
Takemoto Y.
Angew. Chem. Int. Ed. 2017; 56: 7653
37
Nicolaou KC,
Simmons NL,
Ying Y,
Heretsch PM,
Chen JS.
J. Am. Chem. Soc. 2011; 133: 8134
38a
Denmark SE,
Kuester WE,
Burk MT.
Angew. Chem. Int. Ed. 2012; 51: 10938
38b
Zheng S,
Schienebeck CM,
Zhang W,
Wang H.-Y,
Tang W.
Asian J. Org. Chem. 2014; 3: 366
39
Togo H,
Katohgi M.
Synlett 2001; 565
40
Wang L,
Liu J.
Eur. J. Org. Chem. 2016; 1813
41a
Magnus P,
Roe MB,
Hulme C.
J. Chem. Soc., Chem. Commun. 1995; 263
41b
Magnus P,
Lacour J,
Evans PA,
Roe MB,
Hulme C.
J. Am. Chem. Soc. 1996; 118: 3406
42
Chennaiah A,
Vankar YD.
Org. Lett. 2018; 20: 2611
43
Zhang B,
Mück-Lichtenfeld C,
Daniliuc CG,
Studer A.
Angew. Chem. Int. Ed. 2013; 52: 10792
44
Zhang B,
Studer A.
Org. Lett. 2014; 16: 1216
45
Kong W,
Casimiro M,
Fuentes N,
Merino E,
Nevado C.
Angew. Chem. Int. Ed. 2013; 52: 13086
46
Shinomoto Y,
Yoshimura A,
Shimizu H,
Yamazaki M,
Zhdankin VV,
Saito A.
Org. Lett. 2015; 17: 5212
47
Janhsen B,
Studer A.
J. Org. Chem. 2017; 82: 11703
48
Yu P,
Zheng S.-C,
Yang N.-Y,
Tan B,
Liu X.-Y.
Angew. Chem. Int. Ed. 2015; 54: 4041
49
Yang N.-Y,
Li Z.-L,
Ye L,
Tan B,
Liu X.-Y.
Chem. Commun. 2016; 52: 9052
50
Pitre SP,
McTiernan CD,
Ismaili H,
Scaiano JC.
ACS Catal. 2014; 4: 2530
51
Yang C,
Yang J.-D,
Le Y.-H,
Li X,
Cheng J.-P.
J. Org. Chem. 2016; 81: 12357
52a
Huang H,
Zhang G,
Chen Y.
Angew. Chem. Int. Ed. 2015; 54: 7872
52b
Zhou Q.-Q,
Guo W,
Ding W,
Wu X,
Chen X,
Lu L.-Q,
Xiao W.-J.
Angew. Chem. Int. Ed. 2015; 54: 11196
52c
Le Vaillant F,
Courant T,
Waser J.
Angew. Chem. Int. Ed. 2015; 54: 11200
53
Genovino J,
Lian Y,
Zhang Y,
Hope TO,
Juneau A,
Gagné Y,
Ingle G,
Frenette M.
Org. Lett. 2018; 20: 3229
54
Sun D,
Yin K,
Zhang R.
Chem. Commun. 2018; 54: 1335
55
Le Vaillant F,
Garreau M,
Nicolai S,
Gryn’ova G,
Corminbeuf C,
Waser J.
Chem. Sci. 2018; 9: 5883