Synthesis 2018; 50(15): 2999-3005
DOI: 10.1055/s-0036-1591575
special topic
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Driven Oxidation of N-Alkylamides to Imides Using Oxone/H2O and Catalytic KBr

Chong Mei
Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China   Email: luwj@sjtu.edu.cn
,
Yixin Hu
Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China   Email: luwj@sjtu.edu.cn
,
Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China   Email: luwj@sjtu.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (Grant No. 21372153) for financial support.
Further Information

Publication History

Received: 26 February 2018

Accepted after revision: 03 April 2018

Publication Date:
16 May 2018 (online)

Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis

Abstract

Imides are prepared conveniently by visible-light-driven oxidations of various N-alkylamides under mild conditions. The majority of the reactions proceed efficiently by using Oxone as the oxidant in the presence of a catalytic amount of KBr in H2O/CH2Cl2 under irradiation by an 8 W white LED at room temperature. Experimental studies suggest that an imine, obtained from the substrate amide via a radical process, is the key intermediate.

Supporting Information

 
  • References

    • 1a Takeuchi Y. Shiragami T. Kimura K. Suzuki E. Shibata N. Org. Lett. 1999; 1: 1571
    • 1b Nakamura K. CNS Drug Rev. 2002; 8: 70
    • 1c Flatters SJ. Bennett GJ. Pain 2004; 109: 150
    • 1d Stec J. Huang Q. Pieroni M. Kaiser M. Fomovska A. Mui E. Witola WH. Bettis S. McLeod R. Brun R. Kozikowski AP. J. Med. Chem. 2012; 55: 3088
    • 1e Prudhomme M. Eur. J. Med. Chem. 2003; 38: 123
    • 1f Maruyama HB. Suhara Y. Suzuki-Watanabe J. Maeshima Y. Shimizu N. Ogura-Hamada M. Fujimoto H. Takano K. J. Antibiot. 1975; 28: 636
    • 1g Luesch H. Yoshida WY. Moore RE. Paul VJ. Tetrahedron 2002; 58: 7959
    • 1h Stierle AA. Stierle DB. Patacini B. J. Nat. Prod. 2008; 71: 856
    • 1i Pacher T. Raninger A. Lorbeer E. Brecker L. But PP.-H. Greger H. J. Nat. Prod. 2010; 73: 1389
    • 1j Ding G. Jiang L. Guo L. Chen X. Zhang H. Che Y. J. Nat. Prod. 2008; 71: 1861
    • 1k Lavrard H. Rodriguez F. Delfourne E. Bioorg. Med. Chem. 2014; 22: 4961
    • 1l Hugon B. Anizon F. Bailly C. Golsteyn RM. Pierré A. Léonce S. Hickman J. Pfeiffer B. Prudhomme M. Bioorg. Med. Chem. 2007; 15: 5965
    • 1m Schmidt Y. van der Voort M. Crüsemann M. Piel J. Josten M. Sahl HG. Miess H. Raaijmakers JM. Gross H. ChemBioChem 2014; 15: 259
    • 2a Montalbetti CA. G. N. Falque V. Tetrahedron 2005; 61: 10827
    • 2b Simas AB. C. de Sales DL. Pais KC. Tetrahedron Lett. 2009; 50: 6977
    • 2c Ke D. Zhan C. Li X. Li AD. Q. Yao J. Synlett 2009; 1506
    • 2d Li X. Fang Y. Deng P. Hu J. Li T. Feng W. Yuan L. Org. Lett. 2011; 13: 4628
    • 2e Lee J. Hong M. Jung Y. Cho EJ. Rhee H. Tetrahedron 2012; 68: 2045
    • 3a Wang L. Fu H. Jiang Y. Zhao Y. Chem. Eur. J. 2008; 14: 10722
    • 3b Wang F. Liu H. Fu H. Jiang Y. Zhao Y. Adv. Synth. Catal. 2009; 351: 246
    • 3c Zhang J. Hong SH. Org. Lett. 2012; 14: 4646
    • 3d Bian Y.-J. Chen C.-Y. Huang Z.-Z. Chem. Eur. J. 2013; 19: 1129
    • 3e Wang J. Liu C. Yuan J. Lei A. Chem. Commun. 2014; 50: 4736
    • 3f Yu H. Zhang Y. Eur. J. Org. Chem. 2015; 1824
    • 3g Aruri H. Singh U. Kumar S. Kushwaha M. Gupta AP. Vishwakarma RA. Singh PP. Org. Lett. 2016; 18: 3638
    • 3h Xu N. Liu J. Li D. Wang L. Org. Biomol. Chem. 2016; 14: 4749
    • 3i Gálvez AO. Schaack CP. Noda H. Bode JW. J. Am. Chem. Soc. 2017; 139: 1826
    • 4a Sueda T. Kajishima D. Goto S. J. Org. Chem. 2003; 68: 3307
    • 4b Xu L. Zhang S. Trudell ML. Chem. Commun. 2004; 1668
    • 4c Nicolaou KC. Mathison CJ. N. Angew. Chem. Int. Ed. 2005; 44: 5992
    • 4d Wang JR. Liu L. Wang YF. Zhang Y. Deng W. Guo QX. Tetrahedron Lett. 2005; 46: 4647
    • 4e Nakayama H. Itoh A. Synlett 2008; 675
    • 4f Huang W. Wang M. Yue H. Synthesis 2008; 1342
    • 4g Martinelli F. Palmieri A. Petrini M. Eur. J. Org. Chem. 2010; 5085
    • 4h Tada N. Ban K. Yoshida M. Hirashima SI. Miura T. Itoh A. Tetrahedron Lett. 2010; 51: 6098
    • 4i Jin Z. Xu B. Hammond GB. Tetrahedron Lett. 2011; 52: 1956
    • 4j Yan X. Fang K. Liu H. Xi C. Chem. Commun. 2013; 49: 10650
    • 4k Itoh I. Matsusaki Y. Fujiya A. Tada N. Miura T. Itoh A. Tetrahedron Lett. 2014; 55: 3160
    • 4l Yu H. Chen Y. Zhang Y. Chin. J. Chem. 2015; 33: 531
    • 4m Hu Y. Zhou L. Lu W. Synthesis 2017; 49: 4007
  • 5 Zhao M. Lu W. Org. Lett. 2017; 19: 4560
    • 6a Moriyama K. Takemura M. Togo H. Org. Lett. 2012; 14: 2414
    • 6b Yin L. Wu J. Xiao J. Cao S. Tetrahedron Lett. 2012; 53: 4418
  • 7 Lu W. Zhou L. Oxidation of C-H Bonds. John Wiley & Sons; Hoboken: 2017
  • 8 Koo BS. Lee CK. Lee KJ. Synth. Commun. 2002; 32: 2115
  • 9 Sambaiah M. Gudipati R. Kumar KS. Yennam S. Behera M. Tetrahedron Lett. 2016; 57: 403
  • 10 Niu Z. Lin S. Dong Z. Sun H. Liang F. Zhang J. Org. Biomol. Chem. 2013; 11: 2460
  • 11 Mohammadpoor-Baltork I. Tangestaninejad S. Moghadam M. Mirkhani V. Nasr-Esfahani M. J. Iran. Chem. Soc. 2011; 8: 401
  • 12 Lin Y. Lang SA. Synthesis 1980; 119
  • 13 Thompson QE. J. Am. Chem. Soc. 1951; 73: 5841
  • 14 Jagerovic N. Hernandez-Folgado L. Alkorta I. Goya P. Navarro M. Serrano A. de Fonseca FR. Dannert MT. Alsasua A. Suardiaz M. Pascual D. Martín MI. J. Med. Chem. 2004; 47: 2939
  • 15 Evans DA. Nagorny P. Xu R. Org. Lett. 2006; 8: 5669
  • 16 Gade T. Streek M. Voß J. Chem. Ber. 1992; 125: 127
  • 17 Eby CJ. Hauser CR. J. Am. Chem. Soc. 1957; 79: 723
  • 18 Graziano ML. Iesce MR. Scarpalixs R. J. Heterocycl. Chem. 1979; 16: 129
  • 19 Hvoslef J. Tracy ML. Nash CP. Acta Crystallogr., Sect. C 1986; 42: 353
  • 20 Hubert JC. Wijnberg JB. P. A. Speckamp WN. Tetrahedron 1975; 31: 1437
  • 21 Habibi Z. Salehi P. Zolfigol MA. Yousefi M. Synlett 2007; 812
  • 22 Owston NA. Parker AJ. Williams JM. J. Org. Lett. 2007; 9: 73