Synthesis 2018; 50(02): 227-240
DOI: 10.1055/s-0036-1591498
short review
© Georg Thieme Verlag Stuttgart · New York

Selective Synthesis of 2- and 7-Substituted Indole Derivatives via Chelation-Assisted Metallocarbenoid C–H Bond Functionalization

Daria V. Vorobyeva
A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, 119991 Moscow, Russian Federation   Email: osipov@ineos.ac.ru
,
Sergey N. Osipov*
A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, 119991 Moscow, Russian Federation   Email: osipov@ineos.ac.ru
› Author Affiliations
This work was financially supported by the Russian Foundation of Basic­ Research (RFBR, Grant Nos. 15-03-03287 and 16-29-10672).
Further Information

Publication History

Received: 24 August 2017

Accepted after revision: 28 September 2017

Publication Date:
19 October 2017 (online)

Abstract

Functionally substituted indole derivatives are important intermediates for the synthesis of new potential drug candidates exhibiting strong bioactivities. Over the past few years, significant progress has been made in the direct C–H functionalization of the indole ring through the usage of metal-catalyzed intermolecular cross-coupling with diazo compounds. Directing group strategy provides a unique possibility for selective insertion of carbenes catalytically generated from diazo compounds into challenging indole C2–H and C7–H bonds. This short review summarizes recent advances in carbenoid functionalization of indole derivatives under chelation-controlled metal catalysis.

1 Introduction

2 Indole C2 Alkylation with α-Diazotized Meldrum’s Acid

3 Indole C2 Alkylation with Diazomalonate Derivatives and Related Compounds

4 Indole C7 Alkylation with Diazomalonates and Related Compounds

5 Tandem Indole C2–H Alkylation/Cyclization

6 Indoline C7 Alkylation with Diazomalonates and Related Compounds

7 Tandem Indoline C7–H Alkylation/Cyclization

8 Conclusion

 
  • References

    • 1a Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1b Kaushik NK. Kaushik N. Attri P. Kumar N. Kim CH. Verma AK. Chio EH. Molecules 2013; 18: 6620
    • 1c Somei M. Yamada F. Nat. Prod. Rep. 2005; 22: 73
    • 1d Chen F.-E. Huang J. Chem. Rev. 2005; 105: 4671
    • 1e Trost BM. Brennan MK. Synthesis 2009; 3003
    • 2a Teders M. Pitzer L. Buss S. Glorius F. ACS Catal. 2017; 7: 4053
    • 2b Lal S. Snape TJ. Curr. Med. Chem. 2012; 19: 4828
    • 2c Abdel-Aty AM. J. Pestic. Sci. 2010; 35: 431
    • 2d Ishikura M. Abe T. Choshi T. Hibino S. Nat. Prod. Rep. 2013; 30: 694
    • 2e Yeung KS. Qiu ZL. Xue QF. Fang HQ. Yang Z. Zadjura L. D’Arienzo CJ. Eggers BJ. Riccardi K. Shi PY. Gong YF. Browning MR. Gao Q. Hansel S. Santone K. Lin PF. Meanwell NA. Kadow JF. Bioorg. Med. Chem. Lett. 2013; 23: 198
    • 2f Yeung KS. Qiu ZL. Yin ZW. Trehan A. Fang HQ. Pearce B. Yang Z. Zadjura L. D’Arienzo CJ. Riccardi K. Shi PY. Spicer TP. Gong YF. Browning MR. Hansel S. Santone K. Barker J. Coulter T. Lin PF. Meanwell NA. Kadow JF. Bioorg. Med. Chem. Lett. 2013; 23: 203
  • 3 Shen C. Liu R.-R. Fan R.-J. Li Y.-L. Xu T.-F. Gao J.-R. Jia Y.-X. J. Am. Chem. Soc. 2015; 137: 4936
    • 4a Ping L. Chung DS. Bouffard J. Lee S. Chem. Soc. Rev. 2017; 46: 4299
    • 4b Leitch JA. Bhonoah Y. Frost CG. ACS Catal. 2017; 7: 5618
    • 4c Cacchi S. Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 4d Humphrey GR. Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 4e Bandini M. Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 4f Patil S. Patil R. Curr. Org. Synth. 2007; 4: 201
    • 4g Bandini M. Melloni A. Tommasi S. Umani-Ronchi A. Synlett 2005; 1199
    • 6a Muthusamy S. Gunanathan C. Babu SA. Suresh E. Dastidar P. Chem. Commun. 2002; 824
    • 6b Gibe R. Kerr MA. J. Org. Chem. 2002; 67: 6247
    • 6c Muthusamy S. Gnanaprakasam B. Tetrahedron Lett. 2008; 49: 475
    • 6d DeAngelis A. Shurtleff VW. Dmitrenko O. Fox JM. J. Am. Chem. Soc. 2011; 133: 1650
    • 6e Goto T. Natori Y. Takeda K. Nambu H. Hashimoto S. Tetrahedron: Asymmetry 2011; 22: 907
    • 6f Lian Y. Davies HM. L. Org. Lett. 2010; 12: 924
    • 6g Lian Y. Davies HM. L. Org. Lett. 2012; 14: 1934
    • 6h Lian Y. Davies HM. L. J. Am. Chem. Soc. 2010; 132: 440
    • 6i Qiu H. Li M. Jiang L.-Q. Lv F.-P. Zan L. Zhai C.-W. Doyle MP. Hu W.-H. Nat. Chem. 2012; 4: 733
    • 7a Zhang X.-J. Liu S.-P. Yan M. Chin. J. Chem. 2008; 26: 716
    • 7b Johansen MB. Kerr MA. Org. Lett. 2010; 12: 4956
    • 7c Fraile JM. Le Jeune K. Mayoral JA. Ravasiob N. Zaccheria F. Org. Biomol. Chem. 2013; 11: 4327
  • 8 Yadav JS. Reddy BV. S. Satheesh G. Tetrahedron Lett. 2003; 44: 8331
  • 9 Cai Y. Zhu S.-F. Wang G.-P. Zhou Q.-L. Adv. Synth. Catal. 2011; 353: 2939
  • 10 Davies HM. L. Hedley SJ. Chem. Soc. Rev. 2007; 36: 1109
  • 11 Chan W.-W. Yeung S.-H. Zhou Z. Chan AS. C. Yu W.-Y. Org. Lett. 2010; 12: 604
  • 12 Davies HM. L. Venkataramani C. Hansen T. Hopper DW. J. Am. Chem. Soc. 2003; 125: 6462
    • 13a Song G. Wang F. Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 13b Colby DA. Tsai AS. Bergman RG. Ellman JA. Acc. Chem. Res. 2012; 45: 814
    • 13c Zhu C. Wang R. Falck JR. Chem. Asian J. 2012; 7: 1502
    • 13d Kuhl N. Hopkinson MN. Wencel-Delord J. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 13e Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 13f Kozhushkov SI. Ackermann L. Chem. Sci. 2013; 4: 886
    • 13g Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
    • 13h Thirunavukkarasu VS. Kozhushkov SI. Ackermann L. Chem. Commun. 2014; 50: 29
    • 13i Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 13j Kuhl N. Schröder N. Glorius F. Adv. Synth. Catal. 2014; 356: 1443
    • 13k Zhang Y. Jie X. Zhao H. Li G. Su W. Org. Chem. Front. 2014; 1: 843
    • 13l Zhuo CX. Zheng C. You SL. Acc. Chem. Res. 2014; 47: 2558
    • 13m Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
    • 13n He R. Huang ZT. Zheng QY. Wang C. Tetrahedron Lett. 2014; 55: 5705
    • 13o Moselage M. Sauermann N. Richter SC. Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 6352
    • 14a Chen Y. Wang F. Zhen W. Li X. Adv. Synth. Catal. 2013; 355: 353
    • 14b Wang N. Li B. Song H. Xu S. Wang B. Chem. Eur. J. 2013; 19: 358
    • 14c Presset M. Oehlrich D. Rombouts F. Molander GA. Org. Lett. 2013; 15: 1528
    • 14d Quiñones N. Seoane A. García-Fandiño R. Mascareñas JL. Gulías M. Chem. Sci. 2013; 4: 2874
    • 14e Li B.-J. Wang H.-Y. Zhu Q.-L. Shi Z.-J. Angew. Chem. Int. Ed. 2012; 51: 3948
    • 14f Zhu C. Falck FR. Chem. Commun. 2012; 48: 1674
    • 14g Tan X. Liu B. Li X. Li B. Xu S. Song H. Wang B. J. Am. Chem. Soc. 2012; 134: 16163
    • 14h Patureau FW. Wencel-Delord J. Glorius F. Aldrichimica Acta 2012; 45: 31
    • 14i Wang Y.-F. Toh KK. Lee J.-Y. Chiba S. Angew. Chem. Int. Ed. 2011; 50: 5927
    • 14j Muralirajan K. Parthasarathy K. Cheng C.-H. Angew. Chem. Int. Ed. 2011; 50: 4169
    • 14k Patureau FW. Besset T. Kuhl N. Glorius F. J. Am. Chem. Soc. 2011; 133: 2154
    • 14l Li X. Zhao M. J. Org. Chem. 2011; 76: 8530
    • 14m Guimond N. Gorelsky SI. Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
    • 14n Zhang X. Chen D. Zhao M. Zhao J. Jia A. Li X. Adv. Synth. Catal. 2011; 353: 719
    • 14o Wencel-Delord J. Dröge T. Liu F. Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 14p Too PC. Wang Y.-F. Chiba S. Org. Lett. 2010; 12: 5688
    • 14q Hyster TK. Rovis T. J. Am. Chem. Soc. 2010; 132: 10565
    • 14r Satoh T. Miura M. Chem. Eur. J. 2010; 16: 11212
    • 14s Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 1107

      For selected reviews on catalytic C2 functionalization of indoles, see:
    • 15a Seregin IV. Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
    • 15b Joucla L. Djakovitch L. Adv. Synth. Catal. 2009; 351: 673
    • 15c Beck EM. Gaunt MJ. Top. Curr. Chem. 2010; 292: 85
    • 15d Cacchi S. Fabrizi G. Chem. Rev. 2011; 111: 215
    • 15e Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403
    • 16a Jiao L.-Y. Smirnov P. Oestreich M. Org. Lett. 2014; 16: 6020
    • 16b Nishikata T. Abela AR. Huang S. Lipshutz BH. J. Am. Chem. Soc. 2010; 132: 4978
    • 16c Kalyani D. Deprez NR. Desai LV. Sanford MS. J. Am. Chem. Soc. 2005; 127: 7330
    • 16d Shi Z. Li B. Wan X. Cheng J. Fang Z. Cao B. Qin C. Wang Y. Angew. Chem. Int. Ed. 2007; 46: 5554
    • 17a Urones B. Arrays RG. Carretero JC. Org. Lett. 2013; 15: 1120
    • 17b Jiao L.-Y. Oestreich M. Org. Lett. 2013; 15: 5374
    • 17c Song Z. Samanta R. Antonchick AP. Org. Lett. 2013; 15: 5662
    • 17d Pan S. Wakaki T. Ryu N. Shibata T. Chem. Asian J. 2014; 9: 1257
    • 17e Yang D. Mao S. Gao Y.-R. Guo D.-D. Guo S.-H. Li B. Wang Y.-Q. RSC Adv. 2015; 5: 23727
  • 18 Yang X.-F. Hu X.-H. Feng C. Loh T.-P. Chem. Commun. 2015; 51: 2532
    • 19a Shin K. Chang S. J. Org. Chem. 2014; 79: 12197
    • 19b Pan C. Abdukader A. Han J. Cheng Y. Zhu C. Chem. Eur. J. 2014; 20: 3606
    • 19c Hou W. Yang Y. Ai W. Wu Y. Wang X. Zhou B. Li Y. Eur. J. Org. Chem. 2015; 395
    • 20a Kim M. Mishra NK. Park J. Han S. Shin Y. Sharma S. Lee Y. Lee E.-K. Kwak JH. Kim IS. Chem. Commun. 2014; 50: 14249
    • 20b Shin Y. Sharma S. Mishra NK. Han S. Park J. Oh H. Ha J. Yoo H. Jung YH. Kim IS. Adv. Synth. Catal. 2015; 357: 594
    • 20c Chan C.-W. Zhou Z. Yu W.-Y. Adv. Synth. Catal. 2011; 353: 2999
    • 21a Park J. Mishra NK. Sharma S. Han S. Shin Y. Jeong T. Oh JS. Kwak JH. Jung YH. Kim IS. J. Org. Chem. 2015; 80: 1818
    • 21b Sharma S. Shin Y. Mishra NK. Park J. Han S. Jeong T. Oh Y. Lee Y. Choi M. Kim IS. Tetrahedron 2015; 71: 2435
  • 22 Xie W. Li B. Wang B. J. Org. Chem. 2016; 81: 396
    • 23a Pan S. Ryu N. Shibata T. Adv. Synth. Catal. 2014; 356: 929
    • 23b Neufeldt SR. Seigerman CK. Sanford M. Org. Lett. 2013; 15: 2302
    • 23c Premi C. Dixit A. Jain N. Org. Lett. 2015; 17: 2598
    • 23d Zhou X. Yu S. Qi Z. Kong L. Li X. J. Org. Chem. 2016; 81: 4869
    • 23e Jo H. Park J. Choi M. Sharma S. Jeon M. Mishra NK. Jeong T. Han S. Kim IS. Adv. Synth. Catal. 2016; 358: 2714
    • 24a Yi CS. Yun SY. Guzei IA. J. Am. Chem. Soc. 2005; 127: 5782
    • 24b Yi CS. Yun SY. J. Am. Chem. Soc. 2005; 127: 17000
    • 24c Wang X. Tang H.-Y. Feng H.-J. Li Y.-C. Yang Y.-X. Zhou B. J. Org. Chem. 2015; 80: 6238
    • 24d Yang X.-F. Hu X.-H. Loh T.-P. Org. Lett. 2015; 17: 1481
  • 25 Chan W.-W. Lo S.-F. Zhou Z. Yu W.-Y. J. Am. Chem. Soc. 2012; 134: 13565
  • 26 Hu F. Xia Y. Ma C. Zhang Y. Wang J. Chem. Commun. 2015; 51: 7986
  • 27 Xia Y. Liu Z. Feng S. Zhang Y. Wang J. J. Org. Chem. 2015; 80: 223
    • 28a Zhao D. Kim JH. Stegemann L. Strassert CA. Glorius F. Angew. Chem. Int. Ed. 2015; 54: 4508
    • 28b Liu X.-G. Zhang S.-S. Wu J.-Q. Li Q. Wang H. Tetrahedron Lett. 2015; 56: 4093

      For reviews, see:
    • 29a Barluenga J. Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 29b Shao Z.-H. Zhang H.-B. Chem. Soc. Rev. 2012; 41: 560
    • 29c Xiao Q. Zhang Y. Wang J.-B. Acc. Chem. Res. 2013; 46: 236
    • 29d Liu Z.-X. Wang J.-B. J. Org. Chem. 2013; 78: 10024
    • 29e Xia Y. Zhang Y. Wang J.-B. ACS Catal. 2013; 3: 2586
  • 30 Shi J. Yan Y. Li Q. Xu HE. Yi W. Chem. Commun. 2014; 50: 6483
    • 31a Lamotte Y. Martres P. Faucher N. Laroze A. Grillot D. Ancellin N. Saintillan Y. Beneton V. Gampe RT. Jr. Bioorg. Med. Chem. Lett. 2010; 20: 1399
    • 31b Choi JH. Banks AS. Kamenecka TM. Busby SA. Chalmers MJ. Kumar N. Kuruvilla DS. Shin Y. He Y. Bruning JB. Marciano DP. Cameron MD. Laznik D. Jurczak MJ. Schurer SC. Vidovic D. Shulman GI. Spiegelman BM. Griffin PR. Nature (London) 2011; 477: 477
  • 32 Wan K. Li Z. Qu X. Wang F. Wang L. Catalysts 2016; 6: 89
    • 33a Kirk KL. J. Fluorine Chem. 2006; 127: 1013
    • 33b Müller K. Faeh C. Diederich F. Science (Washington, D. C.) 2007; 317: 1881
    • 33c Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 33d O’Hagan D. J. Fluorine Chem. 2010; 131: 1071
    • 33e Lundgren RJ. Stradiotto M. Angew. Chem. Int. Ed. 2010; 49: 9322
    • 33f Salwiczek M. Nyakatura EK. Gerling UI. M. Ye S. Koksch B. Chem. Soc. Rev. 2012; 41: 2135
    • 33g Ojima I. J. Org. Chem. 2013; 78: 6358
    • 33h Wang J. Sánchez-Roselló M. Aceña JL. del Pozo A. Sorochinsky E. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432

      For selected paper see:
    • 34a Shi G. Xu Y. J. Chem. Soc., Chem. Commun. 1989; 607
    • 34b Shi G. Xu Y. Xu M. Tetrahedron 1991; 47: 1629
    • 34c Osipov SN. Sewald N. Burger K. Kolomiets AF. Fokin AV. Tetrahedron Lett. 1996; 37: 615
    • 34d Jiang B. Zhang Z. Luo Z. Org. Lett. 2002; 4: 2453
    • 34e Mueller P. Grass S. Shahi SP. Bernardinelli G. Tetrahedron 2004; 60: 4755
    • 34f Pang W. Zhu S. Jianga H. Zhu S. Tetrahedron 2006; 62: 11760
    • 34g Vorobyeva DV. Mailyan AK. Peregudov AS. Karimova NM. Vasilyeva TP. Bushmarinov IS. Bruneau C. Dixneuf PH. Osipov SN. Tetrahedron 2011; 67: 3524
    • 34h Swenson AK. Higgins KE. Brewer MG. Coleman MG. Brennessel WW. Org. Biomol. Chem. 2012; 10: 7483
    • 34i Sang R. Shi M. Yang H.-B. Tetrahedron Lett. 2013; 54: 3591
    • 34j Rivilla I. Gomez-Emeterio BP. Fructos MR. Diaz-Requejo MM. Perez PJ. Organometallics 2011; 30: 2855
    • 34k Mailyan AK. Krylov IM. Bruneau C. Dixneuf PH. Osipov SN. Synlett 2011; 2321
    • 34l Mailyan AK. Peregudov AS. Dixneuf PH. Bruneau C. Osipov SN. J. Org. Chem. 2012; 77: 8518
    • 34m Mailyan AK. Krylov IM. Bruneau C. Dixneuf PH. Osipov SN. Eur. J. Org. Chem. 2013; 5353
    • 34n Yagafarova IE. Vorobyeva DV. Peregudov AS. Osipov SN. Eur. J. Org. Chem. 2014; 2480
  • 35 Tsyshchuk IE. Vorobyeva DV. Peregudov AS. Osipov SN. Eur. J. Org. Chem. 2015; 4950
    • 36a Pototschnig G. Maulide N. Schnürch M. Chem. Eur. J. 2017; 23: 9206
    • 36b Wang S. Chen S.-Y. Yu X.-Q. Chem. Commun. 2017; 53: 3165
    • 36c Chirila PG. Whiteoak CJ. Dalton Trans. 2017; 46: 9721
    • 38a Dao H.-T. Baran PS. Angew. Chem. Int. Ed. 2014; 53: 14382
    • 38b Mori H. Tando I. Tanaka H. Macromolecules 2010; 43: 7011
    • 38c Wallraff GM. Hinsberg WD. Chem. Rev. 1999; 99: 1801
  • 39 Zhang S.-S. Jiang C.-Y. Wu J.-Q. Liu X.-G. Li Q. Huang Z.-S. Li D. Wang H. Chem. Commun. 2015; 51: 10240
  • 40 Wang L. Li Z. Qu X. Peng W.-M. Hu S.-Q. Wang H.-B. Tetrahedron Lett. 2015; 56: 6214
  • 41 Jiang H. Gao S. Xu J. Wu X. Lin A. Yao H. Adv. Synth. Catal. 2016; 358: 188
  • 42 Mishra NK. Choi M. Jo H. Oh Y. Sharma S. Han SH. Jeong T. Han S. Lee S.-Y. Kim IS. Chem. Commun. 2015; 51: 17229
    • 43a Mizuta M. Seio K. Miyata K. Sekine M. J. Org. Chem. 2007; 72: 5046
    • 43b Bandurco VT. Wong EM. Levine SD. Hajos ZG. J. Med. Chem. 1981; 24: 1455
    • 43c Hammer H. Winterfeldt E. Tetrahedron 1981; 37: 3609
    • 43d Kato M. Nishino S. Ito K. Yamakuni H. Takasugi H. Chem. Pharm. Bull. 1994; 42: 2556
    • 43e Liu J. Shen M. Zhang Y. Li G. Khodabocus A. Rodriguez S. Qu B. Farina V. Senanayake H. Lu BZ. Org. Lett. 2006; 8: 3573
    • 43f Nukamura I. Sato Y. Terada M. J. Am. Chem. Soc. 2009; 131: 4198
    • 43g Wang Z.-J. Yang J.-G. Bao W. Org. Lett. 2010; 12: 3034
    • 43h Sharp PP. Banwell MG. Renner J. Lohmann K. Willis AC. Org. Lett. 2013; 15: 2616
  • 44 Zhang Y. Zheng J. Cui S. J. Org. Chem. 2014; 79: 6490
  • 45 Chen X. Hu X. Bai S. Deng Y. Jiang H. Zeng W. Org. Lett. 2016; 18: 192
    • 46a Kamata J. Okada T. Kotake Y. Niijima J. Nakamura K. Uenaka T. Yamaguchi A. Tsukahara K. Nagasu T. Koyanagi N. Kitoh K. Yoshimatsu K. Yoshino H. Sugumi H. Chem. Pharm. Bull. 2004; 52: 1071
    • 46b Wright WB. Jr. Brabander HJ. J. Med. Chem. 1968; 11: 1164
  • 47 Wu J.-Q. Yang Z. Zhang S.-S. Jiang C.-Y. Li Q. Huang Z.-S. Wang H. ACS Catal. 2015; 5: 6453
  • 48 Rathore KS. Harode M. Katukojvala S. Org. Biomol. Chem. 2014; 12: 8641

    • For selected examples, see:
    • 49a Broggini G. Beccalli EM. Fasana A. Gazzola S. Beilstein J. Org. Chem. 2012; 8: 1730
    • 49b Lane BS. Sames D. Org. Lett. 2004; 6: 2897
    • 49c Wang X. Lane BS. Sames D. J. Am. Chem. Soc. 2005; 127: 4996
    • 49d Lane BS. Brown MA. Sames D. J. Am. Chem. Soc. 2005; 127: 8050
    • 49e Deprez NR. Kalyani D. Krause A. Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
    • 49f Touré BB. Lane BS. Sames D. Org. Lett. 2006; 8: 1979
    • 49g Stuart DR. Villemure E. Fagnou K. J. Am. Chem. Soc. 2007; 129: 12072
    • 49h Yang S.-D. Sun C.-L. Fang Z. Li B.-J. Li Y.-Z. Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1473
    • 49i Jiao L. Bach T. J. Am. Chem. Soc. 2011; 133: 12990
    • 49j Zhou B. Yang Y. Li Y. Chem. Commun. 2012; 48: 5163
    • 49k Pan S. Ryu N. Shibata T. J. Am. Chem. Soc. 2012; 134: 17474
    • 49l Jiao L. Herdtweck E. Bach T. J. Am. Chem. Soc. 2012; 134: 14563
    • 49m Zhou B. Yang Y. Lin S. Li Y. Adv. Synth. Catal. 2013; 355: 360
    • 49n Ding Z. Yoshikai N. Angew. Chem. Int. Ed. 2012; 51: 4698
    • 49o Kanyiva KS. Nakao Y. Hiyama T. Heterocycles 2007; 72: 677
    • 49p Schipper DJ. Hutchinson M. Fagnou K. J. Am. Chem. Soc. 2010; 132: 6910
    • 49q Yang L. Zhang G. Huang H. Adv. Synth. Catal. 2014; 356: 1509
    • 50a Chatani N. Yorimitsu S. Asaumi T. Kakiuchi F. Murai S. J.  Org. Chem. 2002; 67: 7557
    • 50b Jiao L. Oestreich M. Chem. Eur. J. 2013; 19: 10845
  • 51 Ai W. Yang X. Wu Y. Wang X. Li Y. Yang Y. Zhou B. Chem. Eur. J. 2014; 20: 17653
  • 52 Anzalone AV. Wang TY. Chen Z. Cornish VW. Angew. Chem. Int. Ed. 2013; 52: 650
  • 53 Iagafarova IE. Vorobyeva DV. Loginov DA. Peregudov AS. Osipov SN. Eur. J. Org. Chem. 2017; 840
  • 54 Zhou T. Lia B. Wang B. Chem. Commun. 2016; 52: 14117