Synthesis 2018; 50(02): 254-266
DOI: 10.1055/s-0036-1590957
feature
© Georg Thieme Verlag Stuttgart · New York

Insights into the Cobalt-Catalyzed Three-Component Coupling of Mixed Aromatic Organozinc Species, Carbonyl Compounds or Imines and Michael Acceptors: Synthetic and Mechanistic Aspects

Jérôme Paul
a   Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, F-94320 Thiais, France   eMail: legall@glvt-cnrs.fr
,
Marc Presset
a   Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, F-94320 Thiais, France   eMail: legall@glvt-cnrs.fr
,
a   Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, F-94320 Thiais, France   eMail: legall@glvt-cnrs.fr
,
Eric Léonel
a   Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, F-94320 Thiais, France   eMail: legall@glvt-cnrs.fr
,
Pascal Retailleau
b   Laboratoire de Cristallochimie, Institut de Chimie des Substances Naturelles, ICSN CNRS, Bât 27, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
› Institutsangaben
The financial support of this work by the CNRS and Université Paris-Est (Ph.D. grant to J. P.) is gratefully acknowledged.
Weitere Informationen

Publikationsverlauf

Received: 06. September 2017

Accepted after revision: 17. Oktober 2017

Publikationsdatum:
21. November 2017 (online)


Abstract

The first examples of cobalt-catalyzed multicomponent couplings of mixed aromatic arylzinc reagents with Michael acceptors and carbonyl compounds or imines is described. The reaction system employs a cobalt(II)-2,2′-bipyridine or a cobalt(II)-1,10-phenanthroline complex as a catalyst for both organozinc generation and subsequent multicomponent assembly by formal Michael addition/aldol coupling or Mannich reaction. This study brings new insights into the synthetic scope and mechanism of the reaction.

Supporting Information

 
  • References

    • 1a Multicomponent Reactions in Organic Synthesis . Zhu J. Wang Q. Wang M.-X. Wiley-VCH; Weinheim: 2015
    • 1b Dömling A. Chem. Rev. 2006; 106: 17
    • 2a Sunderhaus JD. Martin SF. Chem. Eur. J. 2009; 15: 1300
    • 2b Biggs-Houck JE. Younai A. Shaw JT. Curr. Opin. Chem. Biol. 2010; 14: 371
    • 2c Ruijter E. Scheffelaar R. Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234

      For selected reviews on tandem conjugate addition–aldol coupling (sequenced or MCR), see:
    • 3a Guo H.-C. Ma J.-A. Angew. Chem. Int. Ed. 2006; 45: 354
    • 3b Chapman CJ. Frost CG. Synthesis 2007; 1
    • 3c Galestokova Z. Sebesta R. Eur. J. Org. Chem. 2012; 6688
    • 3d For a review on tandem reactions of organozinc reagents, see: Kim JH. Ko YO. Bouffard J. Lee S.-G. Chem. Soc. Rev. 2015; 44: 2489

      For MCRs involving a carbonyl compound as the electrophile, see:
    • 4a Dardennes E. Labano S. Simpkins NG. Wilson C. Tetrahedron Lett. 2007; 48: 6380
    • 4b Li Z. Li R. Gan M. Jiang L. Li Z. Tetrahedron Lett. 2015; 56: 5541
    • 4c Brown MK. Degrado SJ. Hoveyda AH. Angew. Chem. Int. Ed. 2005; 44: 5306
    • 4d Keller E. Maurer J. Naasz R. Schrader T. Meetsma A. Feringa BL. Tetrahedron: Asymmetry 1998; 9: 2409
    • 4e Kitamura M. Miki T. Nakano K. Noyori R. Tetrahedron Lett. 1996; 37: 5141
    • 4f Arnold LA. A. Naasz R. Minnaard AJ. Feringa BL. J. Org. Chem. 2002; 67: 7244
    • 4g Arnold LA. Naasz R. Minnaard AJ. Feringa BL. J. Am. Chem. Soc. 2001; 123: 5841
    • 4h Kitamura M. Miki T. Nakano K. Noyori R. Bull. Soc. Chim. Jpn. 2000; 73: 999
    • 4i Paul J. Presset M. Cantagrel F. Le Gall E. Leonel E. Chem. Eur. J. 2017; 23: 402
    • 4j Zhao K. Loh T.-P. Chem. Eur. J. 2014; 20: 16764
    • 4k Arisetti N. Reiser O. Org. Lett. 2015; 17: 94
    • 4l Nozaki K. Oshima K. Utimoto K. Tetrahedron Lett. 1988; 29: 1041

      For MCRs involving an imine as the electrophile, see:
    • 5a González-Gómez JC. Foubelo F. Yus M. Tetrahedron Lett. 2008; 49: 2343
    • 5b Guo S. Xie Y. Hu X. Xia C. Huang H. Angew. Chem. Int. Ed. 2010; 49: 2728
    • 5c González-Gómez JC. Foubelo F. Yus M. J. Org. Chem. 2009; 74: 2547

      For sequenced reactions involving a carbonyl compound as the electrophile, see:
    • 6a Feringa BL. Pineschi M. Arnold LA. Imbos R. de Vries AH. M. Angew. Chem. Int. Ed. 1997; 36: 2620

    • For tandem conjugate addition–aldol coupling using protected aldehydes, see:
    • 6b Alexakis A. Trevitt GP. Bernardinelli G. J. Am. Chem. Soc. 2001; 123: 4358
    • 6c Aikawa K. Okamoto T. Mikami K. J. Am. Chem. Soc. 2012; 134: 10329
    • 6d Howell GP. Fletcher SP. Geurts K. ter Horst B. Feringa BL. J. Am. Chem. Soc. 2006; 128: 14977
    • 6e Mpango GB. Mahalanabis KK. Mahdavi-Damghani Z. Snieckus V. Tetrahedron Lett. 1980; 21: 4823
    • 6f Dalai S. Limbach M. Zhao L. Tamm M. Sevvana M. Sokolov VV. de Meijere A. Synthesis 2006; 471
    • 6g Garcia P. Germain N. Woodward S. Alexakis A. Synlett 2015; 26: 901
    • 6h Marion F. Calvet S. Courillon C. Malacria M. Tetrahedron Lett. 2002; 43: 3369

      For sequenced reactions involving an imine as the electrophile, see:
    • 7a Galeštoková Z. Šebesta R. Eur. J. Org. Chem. 2011; 7092
    • 7b Šebesta R. Bilčík F. Fodran P. Eur. J. Org. Chem. 2010; 5666
    • 7c Drusan M. Lölsberg W. Škvorcová A. Schmalz H.-G. Šebesta R. Eur. J. Org. Chem. 2012; 6285

      Reactions involving radicals do not necessitate the presence of a catalyst. For examples, see:
    • 8a Bazin S. Feray L. Vanthuyne N. Siri D. Bertrand MP. Tetrahedron 2007; 63: 77
    • 8b Vibert F. Maury J. Lingua H. Besson E. Siri D. Bertrand L. Feray MP. Tetrahedron 2015; 71: 8991
    • 8c Bazin S. Feray L. Siri D. Naubron J.-V. Bertrand MP. Chem. Commun. 2002; 2506
    • 8d Zelocualtecatl-Montiel I. García-Álvarez F. Juárez JR. Orea L. Gnecco D. Mendoza A. Chemla F. Ferreira F. Jackowski O. Aparicio DM. Perez-Luna A. Terán JL. Asian J. Org. Chem. 2017; 6: 67
    • 9a Knochel P. Singer RD. Chem. Rev. 1993; 93: 2117
    • 9b Knochel P. Jones P. In Organozinc Reagents, A Practical Approach . Harwood LM. Moody CJ. Oxford University Press; Oxford: 1999
    • 10a Le Floch C. Le Gall E. Léonel E. Koubaa J. Martens T. Retailleau P. Eur. J. Org. Chem. 2010; 5279
    • 10b Le Gall E. Léonel E. Chem. Eur. J. 2013; 19: 5238
    • 10c Le Floch C. Laymand K. Le Gall E. Léonel E. Adv. Synth. Catal. 2012; 354: 823
    • 10d Le Gall E. Sengmany S. Samb I. Benakrour S. Colin C. Pignon A. Léonel E. Org. Biomol. Chem. 2014; 12: 3423
  • 11 Fillon H. Gosmini C. Périchon J. J. Am. Chem. Soc. 2003; 125: 3867
  • 12 Seka S. Buriez O. Nédélec J.-Y. Périchon J. Chem. Eur. J. 2002; 8: 2534
  • 13 CCDC 1556296 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 14 González AS. Arrayás RG. Carretero JC. Org. Lett. 2006; 8: 2977
  • 15 An earlier disclosure was made by Pak in the cleavage of 2-pyridyl sulfonamines, see: Pak CS. Lim DS. Synth. Commun. 2001; 2209
  • 16 Under similar conditions, reaction in EtOH showed no deprotection.
  • 17 It can be noted that such a compound could result from closely related cobalt-catalyzed reductive aldol coupling. However, no examples of such reactions involving arylzinc compounds have been described to date. For an example involving diethylzinc species, see: Lumby RJ. R. Joensuu PM. Lam HW. Tetrahedron 2008; 64: 7729
  • 18 [Co]I would result from the reduction of [Co]II by zinc at an early stage of the process (during the organozinc formation).
  • 19 A related cobaltacyclopentene was described by Cheng as a possible intermediate in the reductive coupling of acrylates and alkynes, see: Wang C.-C. Lin P.-S. Cheng C.-H. J. Am. Chem. Soc. 2002; 124: 9696
  • 20 Lu K. Kwon O. Org. Synth. 2009; 86: 212