Synthesis 2017; 49(15): 3366-3376
DOI: 10.1055/s-0036-1590814
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Carbon–Carbon Bond-Forming Reactions of N-Acylketimines

a  Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0781, Japan   Email: [email protected]
b  School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
› Author Affiliations
Further Information

Publication History

Received: 30 April 2017

Accepted after revision: 02 June 2017

Publication Date:
26 June 2017 (online)


Dedicated to Professor Herbert Mayr on the occasion of his 70th birthday

Abstract

N-Acylketimines are important synthetic building blocks used in the synthesis of a wide variety of functional amino compounds including cyclic and acyclic products. This review focuses on carbon–carbon bond-forming reactions of N-acylketimines to construct amino compounds having tetrasubstituted carbon centers.

1 Introduction

2 Preparation of N-Acylketimines

2.1 Nucleophilic Addition of Amide Derivatives

2.2 Acylation of Imine Derivatives

2.3 An Aza-Wittig-Type Reaction

2.4 Oxidation of Amine Precursors

3 Reactions of N-Acylketimines

3.1 Cyclic Ketimines

3.2 Acyclic Ketimines

4 Conclusions

 
  • References

  • 1 Fišera L. Product Class 9: N-Acylimines . In Science of Synthesis . Padwa A. Thieme; Stuttgart: 2004

    • For recent examples, see:
    • 2a La-Venia A. Ventosa-Andrés P. Hradilová L. Krchnňák V. J. Org. Chem. 2014; 79: 10378
    • 2b Ventosa-Andrés P. La-Venia A. Ripoll CA. B. Hradilová L. Krchnňák V. Chem. Eur. J. 2015; 21: 13112

      For earlier reviews on N-acylimines as amidoalkylating reagents, see:
    • 3a Petrini M. Chem. Rev. 2005; 105: 3949
    • 3b Katritzky AR. Manju K. Singh SK. Meher NK. Tetrahedron 2005; 61: 2555
    • 3c Mazurkiewicz R. Październiok-Holewa A. Adamek J. Zielińska K. Adv. Heterocycl. Chem. 2014; 111: 43
    • 4a Petrini M. Torregiani E. Synthesis 2007; 159
    • 4b Marcantoni E. Petrini M. Adv. Synth. Catal. 2016; 358: 3567
    • 5a Maryanoff BE. Zhang H.-C. Cohen JH. Turchi IJ. Maryanoff CA. Chem. Rev. 2004; 104: 1431
    • 5b Yazici A. Pyne SG. Synthesis 2009; 339
    • 5c Yazici A. Pyne SG. Synthesis 2009; 513
    • 5d Martínez-Estibalez U. Gómez-SanJuan A. García-Calvo O. Aranzamendi E. Lete E. Sotomayor N. Eur. J. Org. Chem. 2011; 3610
    • 5e Vinogradov MG. Turova OV. Zlotin SG. Russ. Chem. Rev. 2017; 86: 1
  • 6 For a review on enantioselective reactions, see: Lee YS. Alam M. Keri RS. Chem. Asian J. 2013; 8: 2906
    • 7a Steglich W. Burger K. Durr M. Burgis E. Chem. Ber. 1974; 107: 1488
    • 7b Burger K. Hübl D. Gertitschke P. J. Fluorine Chem. 1985; 27: 327
    • 8a Dessipri E. Tirrell DA. Macromolecules 1994; 27: 5463
    • 8b Aksinenko AY. Pushin N. Sokolov AV. B. Russ. Chem. Bull., Int. Ed. 2002; 51: 2136
    • 8c Skarpos H. Vorob’eva DV. Osipov SN. Odinets IL. Breuer E. Röschenthaler G.-V. Org. Biomol. Chem. 2006; 4: 3669
    • 8d Pajkert R. Röschenthaler G.-V. J. Fluorine Chem. 2010; 131: 1362
    • 9a Köppen J. Mathies D. Siwers S. Chem. Ztg 1987; 111: 247
    • 9b Lee BH. Biswas A. Miller MJ. J. Org. Chem. 1986; 51: 106
  • 10 Hashimoto T. Yamamoto K. Maruoka K. Chem. Lett. 2011; 40: 326
  • 11 Qian Y. Jing C. Zhai C. Hu W.-H. Adv. Synth. Catal. 2012; 354: 301
  • 12 Kwon Y. Rhee YH. Park J. Adv. Synth. Catal. 2017; 359: 1503
  • 13 Yan W. Wang D. Feng J. Li P. Zhao D. Wang R. Org. Lett. 2012; 14: 2512
  • 14 Matsuo J. Tanaki Y. Kido A. Ishibashi H. Chem. Commun. 2006; 42: 2896
  • 15 Kano T. Kobayashi R. Maruoka K. Org. Lett. 2016; 18: 276
  • 16 Hara N. Nakamura S. Sano M. Tamura R. Funahashi Y. Shibata N. Chem. Eur. J. 2012; 18: 9276
  • 17 Nakamura S. Hyodo K. Nakamura M. Nakane D. Masuda H. Chem. Eur. J. 2013; 19: 7304
  • 18 Feng J. Yan W. Wang D. Li P. Sun Q. Wan R. Chem. Commun. 2012; 48: 8003
  • 19 For a recent review on aza-Henry reactions, see: Noble A. Anderson JC. Chem. Rev. 2013; 113: 2887

    • For recent reviews on asymmetric aza-Henry reactions, see:
    • 20a Marqués-López E. Merino P. Tejero T. Herrera RP. Eur. J. Org. Chem. 2009; 2401
    • 20b Phillips AM. F. Curr. Organocatal. 2016; 3: 222
  • 21 Wang Y.-H. Liu Y.-L. Cao Z.-Y. Zhou J. Asian J. Org. Chem. 2014; 3: 429
  • 22 Kumar A. Kaur J. Chimni SS. Jassal AK. RSC Adv. 2014; 4: 24816
  • 23 Arai T. Matsumura E. Masu H. Org. Lett. 2014; 16: 2768
  • 24 Holmquist M. Blay G. Pedro JR. Chem. Commun. 2014; 50: 9309
  • 25 Fang B. Liu X. Zhao J. Tang Y. Lin L. Feng X. J. Org. Chem. 2015; 80: 3332
  • 26 Hu Y. Zhou Z. Gong L. Meggers E. Org. Chem. Front. 2015; 2: 968
  • 27 Liu Y.-L. Zhou J. Chem. Commun. 2013; 49: 4421
  • 28 Hu F.-L. Wei Y. Shi M. Pindi S. Li G. Org. Biomol. Chem. 2013; 11: 1921
  • 29 Yu J.-S. Zhou J. Org. Biomol. Chem. 2015; 13: 10968
  • 30 Marques CS. Burke AJ. Eur. J. Org. Chem. 2016; 806
    • 31a Corbett JW. Ko SS. Rodgers JD. Jeffrey S. Bacheler LT. Klabe RM. Diamond S. Lai CM. Rabel SR. Saye JA. Adams SP. Trainor GL. Anderson PS. Erickson-Viitanen SK. Antimicrob. Agents Chemother. 1999; 43: 2893
    • 31b Corbett JW. Ko SS. Rodgers JD. Gearhart LA. Magnus NA. Bacheler LT. Diamond S. Jeffrey S. Klabe RM. Cordova BC. Garber S. Logue K. Trainor GL. Anderson PS. Erickson-Viitanen SK. J. Med. Chem. 2000; 43: 2019
  • 32 Kauffman GS. Harris GD. Dorow RL. Stone BR. P. Parsons RL. Jr. Pesti JA. Magnus NA. Fortunak JM. Confalone PN. Nugent WA. Org. Lett. 2000; 2: 3119
  • 33 Xie H. Zhang Y. Zhang S. Chen X. Wang W. Angew. Chem. Int. Ed. 2011; 50: 11773
  • 34 Zhang F.-G. Zhu X.-Y. Li S. Nie J. Ma J.-A. Chem. Commun. 2012; 48: 11552
  • 35 Xie H. Song A. Song X. Zhang X. Wang W. Tetrahedron Lett. 2013; 54: 1409
  • 36 Yuan H.-N. Wang S. Nie J. Meng W. Yao Q. Ma J.-A. Angew. Chem. Int. Ed. 2013; 52: 3869
  • 37 Yuan H.-N. Li S. Mie J. Zheng Y. Ma J.-A. Chem. Eur. J. 2013; 19: 15856
  • 38 Zhang K.-F. Nie J. Guo R. Zheng Y. Ma J.-A. Adv. Synth. Catal. 2013; 355: 3497
  • 39 Zhou D. Huang Z. Yu X. Wang Y. Li J. Wang W. Xie H. Org. Lett. 2015; 17: 5554
  • 40 Zhou B. Jiang C. Gandi VR. Lu Y. Hayashi T. Chem. Eur. J. 2016; 22: 13068

    • For recent examples of C–C bond-forming reactions of N-acyl ketimines which have no α-ester group, see:
    • 41a Golovach NM. Tkachuk VN. Sukach VA. Vovk MV. Russ. J. Org. Chem. 2012; 48: 1187
    • 41b Sokolov VB. Aksinenko AY. Russ. J. Org. Chem. 2012; 48: 1603
    • 41c Kutovaya IV. Shmatova OI. Tkachuk VM. Melnichenko NV. Vovk MV. Nenajdenko VG. Eur. J. Org. Chem. 2015; 6749
    • 41d Kano T. Kobayashi R. Maruoka K. Org. Lett. 2016; 18: 276
  • 42 Sun L.-H. Liang Z.-Q. Jia W.-Q. Ye S. Angew. Chem. Int. Ed. 2013; 52: 5803
  • 43 Takeda T. Kondoh A. Terada M. Angew. Chem. Int. Ed. 2016; 55: 4734
  • 44 Asahara H. Inoue K. Tani S. Umezu K. Nishiwaki N. Adv. Synth. Catal. 2016; 20: 2817
  • 45 Morisaki K. Sawa M. Nomaguchi J. Morimoto H. Takeuchi Y. Mashima K. Ohshima T. Chem. Eur. J. 2013; 19: 8417
  • 46 Morisaki K. Sawa M. Yonesaki R. Morimoto H. Mashima K. Ohshima T. J. Am. Chem. Soc. 2016; 138: 6194