Synthesis 2017; 49(15): 3422-3432
DOI: 10.1055/s-0036-1590792
short review
© Georg Thieme Verlag Stuttgart · New York

Impact of Electronic Effects on the Nucleofugality of Leaving Groups

Bernard Denegri
University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia   Email: [email protected]   Email: [email protected]   Email: [email protected]
,
Mirela Matić
University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia   Email: [email protected]   Email: [email protected]   Email: [email protected]
,
Olga Kronja*
University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia   Email: [email protected]   Email: [email protected]   Email: [email protected]
› Author Affiliations
The authors gratefully acknowledge financial support of this research by the Croatian Science Foundation (grant no. IP-1021).
Further Information

Publication History

Received: 12 May 2017

Accepted after revision: 24 May 2017

Publication Date:
20 June 2017 (online)


This paper is dedicated to Professor Herbert Mayr on the occasion of his 70th birthday.

Abstract

A short review of the development of nucleofugality and electrofugality scales based on solvolysis rates of benzhydryl derivatives is presented. Accordingly, the rate of the heterolytic step in the SN1 displacement reaction and the leaving group ability (nucleofugality) in a given solvent are related with the special linear free-energy relationship (LFER) equation: log k = s f (N f + E f). The impact of electronic effects in the leaving group (nucleofuge) on the overall SN1 reactivity of the substrate is given. The importance of inductivity, resonance, polarity and field effects in the leaving group moiety in the transition state is analyzed. Also, the effect of the negative hyperconjugation and the influence of other electronic effects in the leaving group on the height of the reaction intrinsic barrier are considered.

1 Introduction

2 Development of the Nucleofugality Scale

3 Inductive and Resonance Effects

4 Negative Hyperconjugation

5 Intrinsic Barrier

6 Conclusions

 
  • References

  • 3 Matić M. Denegri B. Kronja O. Eur. J. Org. Chem. 2010; 6019
  • 4 Matić M. Bebek N. Denegri B. Kronja O. Croat. Chem. Acta 2016; 89: 355
  • 5 Streidl N. Denegri B. Kronja O. Mayr H. Acc. Chem. Res. 2010; 43: 1537
  • 7 Noyce DS. Virgilio JA. J. Org. Chem. 1972; 37: 2643
    • 8a Fainberg AH. Winstein S. J. Am. Chem. Soc. 1957; 79: 1608
    • 8b Winstein S. Fainberg AH. Grunwald E. J. Am. Chem. Soc. 1957; 79: 4146
    • 8c Bentley TW. Carter GE. Roberts K. J. Org. Chem. 1984; 49: 5183
    • 8d Bentley TW. Roberts K. J. Org. Chem. 1985; 50: 4821
    • 8e Bentley TW. Llewellyn G. Ryu ZH. J. Org. Chem. 1998; 63: 4654
    • 8f Bentley TW. Schleyer P. vR. Adv. Phys. Org. Chem. 1977; 14: 1
    • 8g Kevill DN. In Advances in Quantitative Structure-Property Relationships . Vol 1. Charton M. JAI Press; Greenwich: 1996: 81
    • 9a Denegri B. Ofial AR. Jurić S. Streiter A. Kronja O. Mayr H. Chem. Eur. J. 2006; 12: 1648
    • 9b Denegri B. Streiter A. Jurić S. Ofial AR. Kronja O. Mayr H. Chem. Eur. J. 2006; 12: 1657
    • 10a Mayr H. Patz M. Angew. Chem., Int. Ed. Engl. 1994; 33: 938
    • 10b Mayr H. Bug T. Gotta MF. Hering N. Irrgang B. Janker B. Kempf B. Loos R. Ofial AR. Remennikov G. Schimmel H. J. Am. Chem. Soc. 2001; 123: 9500
    • 10c Mayr H. Kempf B. Ofial AR. Acc. Chem. Res. 2003; 36: 66
    • 10d Minegishi S. Mayr H. J. Am. Chem. Soc. 2003; 125: 286
    • 10e Minegishi S. Kobayashi S. Mayr H. J. Am. Chem. Soc. 2004; 126: 5174
    • 10f Mayr H. Ofial AR. Pure Appl. Chem. 2005; 77: 1807
  • 11 Matić M. Denegri B. Kronja O. Eur. J. Org. Chem. 2014; 1477
  • 12 Denegri B. Kronja O. J. Org. Chem. 2007; 72: 8427
  • 13 Tsuno Y. Fujio M. Adv. Phys. Org. Chem. 1999; 32: 267
  • 14 Matić M. Denegri B. Kronja O. J. Org. Chem. 2012; 77: 8986
  • 15 Denegri B. Kronja O. J. Org. Chem. 2009; 74: 5927
  • 16 Denegri B. Matić M. Kronja O. Org. Biomol. Chem. 2014; 12: 5698
  • 17 Matić M. Denegri B. Kronja O. Croat. Chem. Acta 2012; 85: 585
  • 18 Matić M. Denegri B. Kronja O. Croat. Chem. Acta 2014; 87: 375
  • 19 Jurić S. Denegri B. Kronja O. J. Phys. Org. Chem. 2012; 25: 147
  • 20 Jurić S. Kronja O. J. Phys. Org. Chem. 2015; 28: 314
    • 21a Kevill DN. Anderson SW. J. Org. Chem. 1991; 56: 1845
    • 21b Kevill DN. Ismail NH. J. D’Souza MJ. J. Org. Chem. 1994; 59: 6303
    • 21c Kevill DN. Anderson SW. Ismail NH. J. J. Org. Chem. 1996; 61: 7256
    • 21d Kevill DN. Ismail NH. J. J. Chem. Soc., Perkin Trans. 2 1998; 1865
  • 22 Caldwell G. Renneboog R. Kebarle P. Can. J. Chem. 1989; 67: 611
  • 23 Hiraoka K. Yamdagni R. Kebarle P. J. Am. Chem. Soc. 1973; 95: 6833
  • 24 Anslyn EV. Dougherty DA. Modern Physical Organic Chemistry . Science Books; Sausalito: 2006
  • 25 Brauman JI. Blair LK. J. Am. Chem. Soc. 1970; 92: 5986
  • 26 CRC Handbook of Chemistry and Physics . 84th ed. Lide RD. CRC Press; Boca Raton: 2003
  • 27 Kevill DN. Kolwyck KC. Shold DM. Kim C.-B. J. Am. Chem. Soc. 1973; 95: 6022
  • 28 Matić M. Jurić S. Denegri B. Kronja O. Int. J. Mol. Sci. 2012; 13: 2012
  • 30 Denegri B. Matić M. Kronja O. ChemistrySelect 2016; 1: 5250
  • 31 Marcus RA. J. Phys. Chem. 1968; 72: 891
  • 32 Dewar MJ. S. Dougherty RC. The PMO Theory of Organic Chemistry . Plenum Press; New York: 1975
  • 34 Mayr H. Ammer J. Baidya M. Maji B. Nigst TA. Ofial AR. Singer T. J. Am. Chem. Soc. 2015; 137: 2580