Synthesis 2018; 50(03): 485-498
DOI: 10.1055/s-0036-1589128
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Synthesis of β-Ketonitriles

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan   Email: kiyokawa@chem.eng.osaka-u.ac.jp   Email: minakata@chem.eng.osaka-u.ac.jp
,
Takaya Nagata
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan   Email: kiyokawa@chem.eng.osaka-u.ac.jp   Email: minakata@chem.eng.osaka-u.ac.jp
,
Satoshi Minakata*
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan   Email: kiyokawa@chem.eng.osaka-u.ac.jp   Email: minakata@chem.eng.osaka-u.ac.jp
› Author Affiliations
This work was supported by JSPS KAKENHI Grant Number JP16K17868 and a grant from Meiji Seika Pharma Co., Ltd. Award in Synthetic Organic Chemistry, Japan.
Further Information

Publication History

Received: 22 August 2017

Accepted after revision: 02 October 2017

Publication Date:
07 November 2017 (eFirst)

Abstract

β-Ketonitriles are an important class of compounds in the field of organic and medicinal chemistry. Over the past decades, numerous efforts have been devoted to the development of new and efficient methodologies for the synthesis of these derivatives, and a number of efficient methods to accomplish this have been developed in recent years. In this context, this short review highlights recent advances in the synthesis of β-ketonitriles.

1 Introduction

2 Acylation of Alkyl Nitriles

3 Electrophilic Cyanation of Ketone Enolates

4 Electrophilic Cyanation of β-Keto Carbonyl Compounds

5 Transition-Metal-Catalyzed Carbonylative Coupling Reactions

6 Miscellaneous Examples

7 Outlook

 
  • References

  • 1 Elnagdi MH. Elmoghayar MR. H. Elgemeie GE. H. Synthesis 1984; 1

    • For selected examples, see:
    • 2a Florey P. Smallridge AJ. Ten A. Trewhella MA. Org. Lett. 1999; 1: 1879
    • 2b Watanabe M. Murata K. Ikariya T. J. Org. Chem. 2002; 67: 1712
    • 2c Zhu D. Ankati H. Mukherjee C. Yang Y. Biehl ER. Hua L. Org. Lett. 2007; 9: 2561
    • 2d Ankati H. Zhu D. Yang Y. Biehl ER. Hua L. J. Org. Chem. 2009; 74: 1658
    • 2e Soltani O. Ariger MA. Vázquez-Villa H. Carreira EM. Org. Lett. 2010; 12: 2893
  • 3 North M. In Comprehensive Organic Functional Group Transformations . Vol. 3 Katritzky AR. Meth-Cohn O. Rees CW. Chap. 3.18 Pergamon; Oxford: 1995: 611
  • 4 Fleming FF. Iyer PS. Synthesis 2006; 893
  • 5 Dorsch JB. McElvain SM. J. Am. Chem. Soc. 1932; 54: 2960
  • 6 Blake J. Willson CD. Rapoport H. J. Am. Chem. Soc. 1964; 86: 5293
  • 7 Eby CJ. Hauser CR. J. Am. Chem. Soc. 1957; 79: 723
  • 8 Barhdadi R. Gal J. Heintz M. Troupel M. J. Chem. Soc., Chem. Commun. 1992; 50
  • 9 Hébri H. Duñach E. Périchon J. Synlett 1992; 293
  • 10 Kayaleh NE. Gupta RC. Johnson F. J. Org. Chem. 2000; 65: 4515
  • 11 Gao Y. Wang H. Xu M. Lian H. Pan Y. Shi Y. Org. Prep. Proced. Int. 2001; 33: 351
  • 12 Ji Y. Trenkle WC. Vowles JV. Org. Lett. 2006; 8: 1161
  • 13 Kim BR. Lee H.-G. Kang S.-B. Jung K.-J. Sung GH. Kim J.-J. Lee S.-G. Yoon Y.-J. Tetrahedron 2013; 69: 10331
  • 14 Liu H. Li L. Sheng H. Zhu X. Xu F. Shen Q. Chin. Sci. Bull. 2011; 56: 1357
  • 15 Katritzky AR. Abdel-Fattah AA. A. Wang M. J. Org. Chem. 2003; 68: 4932
  • 16 Sahu S. Lebedyeva IO. Panda SS. Katritzky AR. Synthesis 2013; 45: 1256
  • 17 Mamuye AD. Castoldi L. Azzena U. Holzer W. Pace V. Org. Biomol. Chem. 2015; 13: 1969
  • 18 Harusawa S. Shioiri T. Tetrahedron 2016; 72: 8125
  • 19 Shioiri T. Hamada Y. J. Org. Chem. 1978; 43: 3631
  • 20 Sim MM. Lee CL. Ganesan A. Tetrahedron Lett. 1998; 39: 2195
  • 21 Yoo BW. Hwang SK. Kim DY. Choi JW. Ko JJ. Choi KI. Kim JH. Tetrahedron Lett. 2002; 43: 4813
  • 22 Mermerian AH. Fu GC. Angew. Chem. Int. Ed. 2005; 44: 949
  • 23 Rasmussen JK. Hassner A. Synthesis 1973; 682
  • 24 Kuehne ME. J. Am. Chem. Soc. 1959; 81: 5400
  • 25 Kuehne ME. Nelson JA. J. Org. Chem. 1970; 35: 161
  • 26 Barton DH. R. Jaszberenyi JC. Theodorakis EA. Tetrahedron 1992; 48: 2613
  • 27 Kahne D. Collum DB. Tetrahedron Lett. 1981; 22: 5011
  • 28 Buttke K. Niclas H.-J. J. Prakt. Chem./Chem.-Ztg. 1998; 340: 669
  • 29 Katritzky AR. Akue-Gedu R. Vakulenko AV. ARKIVOC 2007; (iii): 5 ; http://www.arkat-usa.org/home
  • 30 Shen H. Li J. Liu Q. Pan J. Huang R. Xiong Y. J. Org. Chem. 2015; 80: 7212
  • 31 Nagata T. Matsubara H. Kiyokawa K. Minakata S. Org. Lett. 2017; 19: 4672
  • 32 Talavera G. Peña J. Alcarazo M. J. Am. Chem. Soc. 2015; 137: 8704
  • 33 Kiyokawa K. Nagata T. Minakata S. Angew. Chem. Int. Ed. 2016; 55: 10458
  • 34 Ankner T. Fridén-Saxin M. Pemberton N. Seifert T. Grøtli M. Luthman K. Hilmersson G. Org. Lett. 2010; 12: 2210
  • 35 Buttke K. Niclas H.-J. Synth. Commun. 1994; 24: 3241
  • 36 Maezaki N. Furusawa A. Uchida S. Tanaka T. Heterocycles 2003; 59: 161
  • 37 Kim J.-J. Kweon D.-H. Cho S.-D. Kim H.-K. Jung E.-Y. Lee S.-G. Falck JR. Yoon Y.-J. Tetrahedron 2005; 61: 5889
  • 38 Akula R. Xiong Y. Ibrahim H. RSC Adv. 2013; 3: 10731
  • 39 Wang Y.-F. Qiu J. Kong D. Gao Y. Lu F. Karmaker PG. Chen F.-X. Org. Biomol. Chem. 2015; 13: 365
  • 40 Chowdhury R. Schörgenhumer J. Novacek J. Waser M. Tetrahedron Lett. 2015; 56: 1911
  • 41 Chen M. Huang Z.-T. Zheng Q.-Y. Org. Biomol. Chem. 2015; 13: 8812
  • 42 Qiu J.-S. Wang Y.-F. Qi G.-R. Karmaker PG. Yin H.-Q. Chen F.-X. Chem. Eur. J. 2017; 23: 1775
  • 43 Ma B. Lin X. Lin L. Feng X. Liu X. J. Org. Chem. 2017; 82: 701
  • 44 Wang Y. Liu X. Deng L. J. Am. Chem. Soc. 2006; 128: 3928
  • 45 Wang B. Wu F. Wang Y. Liu X. Deng L. J. Am. Chem. Soc. 2007; 129: 768
  • 46 Lee HJ. Woo SB. Kim Y. Tetrahedron Lett. 2012; 53: 3374
  • 47 Kobayashi T. Tanaka M. Tetrahedron Lett. 1986; 27: 4745
  • 48 Negishi E. Zhang Y. Shimoyama I. Wu G. J. Am. Chem. Soc. 1989; 111: 8018
  • 49 Morimoto T. Fujioka M. Fuji K. Tsutsumi K. Kakiuchi K. J. Organomet. Chem. 2007; 692: 625
  • 50 Jensen MT. Juhl M. Nielsen DU. Jacobsen MF. Lindhardt AT. Skrydstrup T. J. Org. Chem. 2016; 81: 1358
  • 51 Park A. Lee S. Org. Lett. 2012; 14: 1118
  • 52 Pyo A. Park A. Jung HM. Lee S. Synthesis 2012; 2885
  • 53 Schranck J. Burhardt M. Bornschein C. Neumann H. Skrydstrup T. Beller M. Chem. Eur. J. 2014; 20: 9534
  • 54 Slätt J. Romero I. Bergman J. Synthesis 2004; 2760
  • 55 Khalil KD. Al-Matar HM. Al-Dorri DM. Elnagdi MH. Tetrahedron 2009; 65: 9421
  • 56 Andicsovà-Eckstein A. Kozma E. Végh D. J. Heterocycl. Chem. 2016; 53: 1945
  • 57 Shen J. Yang D. Liu Y. Qin S. Zhang J. Sun J. Liu C. Liu C. Zhao X. Chu C. Liu R. Org. Lett. 2014; 16: 350
  • 58 Yang Z. Son K.-I. Li S. Zhou B. Xu J. Eur. J. Org. Chem. 2014; 6380
  • 59 Li J. Ma W. Ming W. Xu C. Wei N. Wang M. J. Org. Chem. 2015; 80: 11138
  • 60 Malapit CA. Caldwell DR. Luvaga IK. Reeves JT. Volchkov I. Gonnella NC. Han ZS. Busacca CA. Howell AR. Senanayake CH. Angew. Chem. Int. Ed. 2017; 56: 6999
  • 61 Malapit CA. Reeves JT. Busacca CA. Howell AR. Senanayake CH. Angew. Chem. Int. Ed. 2016; 55: 326