Synthesis 2017; 49(15): 3255-3268
DOI: 10.1055/s-0036-1589063
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Synthesis and Chemistry of Nitronates

Andrey A. Tabolin
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation   Email: [email protected]   Email: [email protected]
,
Alexey Yu. Sukhorukov*
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation   Email: [email protected]   Email: [email protected]
,
Sema L. Ioffe
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation   Email: [email protected]   Email: [email protected]
,
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation   Email: [email protected]   Email: [email protected]
› Author Affiliations
This work was supported by the Russian Science Foundation (project 14-50-00126).
Further Information

Publication History

Received: 27 April 2017

Accepted after revision: 31 May 2017

Publication Date:
05 July 2017 (online)


This paper is dedicated to Professor Herbert Mayr on the occasion of his 70th birthday

Abstract

Due to their availability and versatile reactivity, nitronates have become important building blocks in the stereoselective synthesis of bioactive molecules. This short review provides a summary of recent developments on the synthesis, chemistry and applications of O-alkyl and O-silyl nitronates.

1 Introduction

2 Approaches to the Synthesis of Nitronates

2.1 Synthesis of Six-Membered Cyclic Nitronates

2.1.1 Formal [4+2] Approaches

2.1.2 Formal [3+3] Approaches

2.1.3 Other Approaches

2.2 Synthesis of Five-Membered Cyclic Nitronates

2.2.1 Formal [3+2] Approaches

2.2.2 Formal [4+1] Approaches

2.2.3 Oxidation Approaches

3 Chemistry of Nitronates

3.1 Nitronates as α-C-Nucleophiles

3.2 Nitronates as α-C-Electrophiles

3.3 Nitronates in [3+n]-Annulation Reactions

3.4 Reactions Involving the β-Carbon Atom of Nitronates

3.5 Miscellaneous Transformations

4 Conclusion

 
  • References

  • 1 Ioffe SL. Nitronates. In Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis. Feuer H. Wiley; Hoboken: 2008: 435-747

    • For recent general reviews on nitroalkane chemistry, see:
    • 2a Ono N. The Nitro Group in Organic Synthesis. Wiley-VCH; Weinheim: 2002
    • 2b Sukhorukov AY. Sukhanova AA. Zlotin SG. Tetrahedron 2016; 72: 6191
    • 2c Ballini R. Palmieri A. Righi P. Tetrahedron 2007; 63: 12099
    • 2d Ballini R. Bosica G. Fiorini D. Palmieri A. Petrini M. Chem. Rev. 2005; 105: 933
    • 2e Luzzio FA. Tetrahedron 2001; 57: 915
    • 2f Noble A. Anderson JC. Chem. Rev. 2013; 113: 2887
    • 2g Ballini R. Gabrielli S. Palmieri A. Petrini M. Curr. Org. Chem. 2011; 15: 1482
    • 2h Ballini R. Petrini M. Adv. Synth. Catal. 2015; 357: 2371
  • 3 Denmark SE. Cottell JJ. Nitronates. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Padwa A. Pearson WH. John Wiley & Sons; Hoboken: 2003: 83-167
    • 4a Baiazitov RY. Denmark SE. In Tandem [4+2]/[3+2] Cycloadditions. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses. Nishiwaki N. John Wiley & Sons; Hoboken: 2014: 471-550
    • 4b Denmark SE. Thorarensen A. Chem. Rev. 1996; 96: 137
    • 4c Sukhorukov AY. Dilman AD. Ioffe SL. Chem. Heterocycl. Compd. 2012; 48: 49
    • 4d Zlotin SG. Churakov AM. Luk’yanov OA. Makhova NN. Sukhorukov AY. Tartakovsky VA. Mendeleev Commun. 2015; 25: 399
    • 5a Fedorov OV. Levin VV. Volodin AD. Struchkova MI. Korlyukov AA. Dilman AD. Tetrahedron Lett. 2016; 57: 3639
    • 5b Mikhaylov AA. Dilman AD. Novikov RA. Khoroshutina YA. Struchkova MI. Arkhipov DE. Nelyubina YV. Tabolin AA. Ioffe SL. Tetrahedron Lett. 2016; 57: 11
  • 6 Schmidt CD. Kaschel J. Schneider TF. Kratzert D. Stalke D. Werz DB. Org. Lett. 2013; 15: 6098
    • 7a Kunetsky RA. Dilman AD. Struchkova MI. Belyakov PA. Tartakovsky VA. Ioffe SL. Synthesis 2006; 2265
    • 7b Kunetsky RA. Dilman AD. Ioffe SL. Struchkova MI. Strelenko YA. Tartakovsky VA. Org. Lett. 2003; 5: 4907
    • 8a Rouf A. Şahin E. Tanyeli C. Tetrahedron 2017; 73: 331
    • 8b Mélot JM. Texier-Boullet F. Foucaud A. Tetrahedron 1988; 44: 2215
    • 8c Duan H. Sun X. Liao W. Petersen JL. Shi X. Org. Lett. 2008; 10: 4113
    • 8d Zhong C. Gautam LN. S. Wang D. Akhmedov NG. Petersen JL. Shi X. Tetrahedron 2011; 67: 4402
    • 9a Zhang Q. Sun J. Zhang F. Yu B. Eur. J. Org. Chem. 2010; 3579
    • 9b Kano T. Yamamoto A. Song S. Maruoka K. Bull. Chem. Soc. Jpn. 2011; 84: 1057
    • 9c Kano T. Yamamoto A. Song S. Maruoka K. Chem. Commun. 2011; 47: 4358
    • 9d Guo Z.-W. Xie J.-W. Chen C. Zhu W.-D. Org. Biomol. Chem. 2012; 10: 8471
    • 9e Shi Z. Tan B. Leong WW. Y. Zeng X. Lu M. Zhong G. Org. Lett. 2010; 12: 5402
    • 10a An J. Lu L.-Q. Yang Q.-Q. Wang T. Xiao W.-J. Org. Lett. 2013; 15: 542
    • 10b Zhong C. Gautam LN. S. Petersen JL. Akhmedov NG. Shi X. Chem. Eur. J. 2010; 16: 8605
    • 10c Kumaran G. Kulkarni GH. Synthesis 1995; 1545
    • 10d Magdesieva NN. Sergeeva TA. Kyandzhetsian RA. J. Org. Chem. USSR 1985; 21: 1813
  • 11 Bianchi L. Ghelfi F. Giorgi G. Maccagno M. Petrillo G. Spinelli D. Stenta M. Tavani C. Eur. J. Org. Chem. 2013; 6298
    • 12a Bhaumik A. Pathak T. J. Org. Chem. 2015; 80: 11057
    • 12b Lin H. Shen Q. Lu L. J. Org. Chem. 2011; 76: 7359
    • 12c Chow YL. Yuen Shu Y. Bakker BH. Somasekharen Pillay K. Heterocycles 1989; 29: 2245
    • 12d Johnson CR. Lockard JP. Kennedy ER. J. Org. Chem. 1980; 45: 264
    • 12e Braun H. Huber G. Tetrahedron Lett. 1976; 17: 2121
  • 13 Perez V. Rabasso N. Fadel A. Eur. J. Org. Chem. 2016; 320
    • 14a Jiang H. Elsner P. Jensen KL. Falcicchio A. Marcos V. Jørgensen KA. Angew. Chem. Int. Ed. 2009; 48: 6844
    • 14b Rosini G. Marotta E. Righi P. Seerden JP. J. Org. Chem. 1991; 56: 6258
  • 15 Marotta E. Baravelli M. Maini L. Righi P. Rosini G. J. Org. Chem. 1998; 63: 8235
    • 16a Marotta E. Micheloni LM. Scardovi N. Righi P. Org. Lett. 2001; 3: 727
    • 16b Scardovi N. Casalini A. Peri F. Righi P. Org. Lett. 2002; 4: 965
  • 17 Righi P. Scardovi N. Marotta E. ten Holte P. Zwanenburg B. Org. Lett. 2002; 4: 497
    • 18a Vichard D. Boubaker T. Terrier F. Pouet M.-J. Dust JM. Buncel E. Can. J. Chem. 2001; 79: 1617
    • 18b Sepulcri P. Hallé JC. Goumont R. Riou D. Terrier F. J. Org. Chem. 1999; 64: 9254
  • 19 Semenyuk YP. Morozov PG. Burov ON. Kletskii ME. Lisovin AV. Kurbatov SV. Terrier F. Tetrahedron 2016; 72: 2254
  • 20 Starosotnikov AM. Leontieva MA. Bastrakov MA. Puchnin AV. Kachala VV. Shevelev SA. Mendeleev Commun. 2010; 20: 165
    • 21a Bastrakov MA. Starosotnikov AM. Kachala VV. Dalinger IL. Shevelev SA. Chem. Heterocycl. Compd. 2015; 51: 496
    • 21b Bastrakov MA. Starosotnikov AM. Fedyanin IV. Kachala VV. Shevelev SA. Mendeleev Commun. 2014; 24: 203
    • 21c Bastrakov MA. Starosotnikov AM. Kachala VV. Fedyanin IV. Shevelev SA. Asian J. Org. Chem. 2015; 4: 146
    • 21d Steglenko DV. Shevelev SA. Kletskii ME. Burov ON. Lisovin AV. Starosotnikov AM. Morozov PG. Kurbatov SV. Minkin VI. Bastrakov MA. Chem. Heterocycl. Compd. 2015; 51: 845
    • 21e Starosotnikov AM. Bastrakov MA. Pavlov AA. Fedyanin IV. Dalinger IL. Shevelev SA. Mendeleev Commun. 2016; 26: 217
    • 21f Bastrakov MA. Starosotnikov AM. Pavlov AA. Dalinger IL. Shevelev SA. Chem. Heterocycl. Compd. 2016; 52: 690
  • 22 Asahara M. Shibano C. Koyama K. Tamura M. Tohda Y. Nishiwaki N. Ariga M. Tetrahedron Lett. 2005; 46: 7519
  • 23 Lakhdar S. Goumont R. Boubaker T. Mokhtari M. Terrier F. Org. Biomol. Chem. 2006; 4: 1910
    • 24a Seebach D. Sun X. Sparr C. Ebert M.-O. Schweizer WB. Beck AK. Helv. Chim. Acta 2012; 95: 1064
    • 24b Seebach D. Sun X. Ebert M.-O. Schweizer WB. Purkayastha N. Beck AK. Duschmalé J. Wennemers H. Mukaiyama T. Benohoud M. Hayashi Y. Reiher M. Helv. Chim. Acta 2013; 96: 799
    • 24c Sahoo G. Rahaman H. Madarász Á. Pápai I. Melarto M. Valkonen A. Pihko PM. Angew. Chem. Int. Ed. 2012; 51: 13144
  • 25 Gurubrahamam R. Chen Y. m. Huang W.-Y. Chan Y.-T. Chang H.-K. Tsai M.-K. Chen K. Org. Lett. 2016; 18: 3046
    • 26a Lalonde MP. Chen Y. Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 6366
    • 26b Zhang X.-J. Liu S.-P. Lao J.-H. Du G.-J. Yan M. Chan AS. C. Tetrahedron: Asymmetry 2009; 20: 1451
  • 27 Creech GS. Kwon O. J. Am. Chem. Soc. 2010; 132: 8876
  • 28 Henry CE. Kwon O. Org. Lett. 2007; 9: 3069
  • 29 Charette AB. Wurz RP. Ollevier T. Helv. Chim. Acta 2002; 85: 4468
  • 30 Chemagin AV. Yashin NV. Grishin YK. Kuznetsova TS. Zefirov NS. Synthesis 2010; 259
  • 31 Yashin NV. Averina EB. Gerdov SM. Kuznetsova TS. Zefirov NS. Tetrahedron Lett. 2003; 44: 8241
  • 32 Schneider TF. Werz DB. Org. Lett. 2011; 13: 1848
    • 33a O’Bannon PE. Dailey WP. Tetrahedron 1990; 46: 7341
    • 33b Lifchits O. Charette AB. Org. Lett. 2008; 10: 2809
    • 34a Seebach D. Häner R. Vettiger T. Helv. Chim. Acta 1987; 70: 1507
    • 34b Vettiger T. Seebach D. Liebigs Ann. Chem. 1990; 195
  • 35 Wade PA. Castillo CE. Paparoidamis N. J. Phys. Org. Chem. 2014; 27: 38
  • 36 Zhou R. Duan C. Yang C. He Z. Chem. Asian J. 2014; 9: 1183
    • 37a Zhu C.-Y. Deng X.-M. Sun X.-L. Zheng J.-C. Tang Y. Chem. Commun. 2008; 738
    • 37b Zhu C.-Y. Sun X.-L. Deng X.-M. Zheng J.-C. Tang Y. Tetrahedron 2008; 64: 5583
  • 38 Yan W. Shi X. Zhong C. Asian J. Org. Chem. 2013; 2: 904
    • 39a Itoh K. Kishimoto S. New J. Chem. 2000; 24: 347
    • 39b Itoh K. Kishimoto S. Sagi K. Can. J. Chem. 2009; 87: 760
    • 40a Raihan MJ. Kavala V. Habib PM. Guan Q.-Z. Kuo C.-W. Yao C.-F. J. Org. Chem. 2011; 76: 424
    • 40b Kawai H. Okusu S. Tokunaga E. Shibata N. Eur. J. Org. Chem. 2013; 6506
    • 41a Warsinsky R. Steckhan E. J. Chem. Soc., Perkin Trans. 1 1994; 2027
    • 41b Elamparuthi E. Kim BG. Yin J. Maurer M. Linker T. Tetrahedron 2008; 64: 11925
    • 41c Snider BB. Che Q. Tetrahedron 2002; 58: 7821
    • 41d Arai N. Narasaka K. Bull. Chem. Soc. Jpn. 1997; 70: 2525
  • 42 Kamimura A. Takeuchi R. Ikeda K. Moriyama T. Sumimoto M. J. Org. Chem. 2012; 77: 2236
  • 43 Moriyama T. Ito Y. Koyama Y. Kawamoto T. Kamimura A. Tetrahedron Lett. 2016; 57: 3127
  • 44 Kamimura A. Moriyama T. Ito Y. Kawamoto T. Uno H. J. Org. Chem. 2016; 81: 4664
  • 45 Moriyama T. Kawamoto T. Uno H. Kamimura A. Heterocycles 2016; 92: 1479
  • 46 Marsini MA. Huang Y. Van De Water RW. Pettus TR. Org. Lett. 2007; 9: 3229
    • 47a Knudsen KR. Risgaard T. Nishiwaki N. Gothelf KV. Jørgensen KA. J. Am. Chem. Soc. 2001; 123: 5843
    • 47b Risgaard T. Gothelf KV. Jorgensen KA. Org. Biomol. Chem. 2003; 1: 153

      For recent examples, see:
    • 48a Smirnov VO. Khomutova YA. Tartakovsky VA. Ioffe SL. Eur. J. Org. Chem. 2012; 3377
    • 48b Mikhaylov AA. Novikov RA. Khomutova YA. Arkhipov DE. Korlyukov AA. Tabolin AA. Tomilov YV. Ioffe SL. Synlett 2014; 25: 2275
    • 48c Mikhaylov AA. Dilman AD. Struchkova MI. Khomutova YA. Korlyukov AA. Ioffe SL. Tartakovsky VA. Tetrahedron 2011; 67: 4584
    • 48d Zhmurov PA. Khoroshutina YA. Novikov RA. Golovanov IS. Sukhorukov AY. Ioffe SL. Chem. Eur. J. 2017; 23: 4570
  • 49 Colvin EW. Seebach D. J. Chem. Soc., Chem. Commun. 1978; 689
    • 50a Wu C.-Y. Horibe T. Jacobsen CB. Toste FD. Nature 2015; 517: 449
    • 50b MacDonald FK. Carneiro KM. M. Pottie IR. Tetrahedron Lett. 2011; 52: 891
    • 50c Anderson JC. Blake AJ. Howell GP. Wilson C. J. Org. Chem. 2005; 70: 549
  • 51 Anderson JC. Howell GP. Lawrence RM. Wilson CS. J. Org. Chem. 2005; 70: 5665
    • 52a Ooi T. Doda K. Maruoka K. J. Am. Chem. Soc. 2003; 125: 9022
    • 52b Ooi T. Doda K. Takada S. Maruoka K. Tetrahedron Lett. 2006; 47: 145
  • 53 Nemoto T. Jin L. Nakamura H. Hamada Y. Tetrahedron Lett. 2006; 47: 6577
  • 54 Khomutova YA. Smirnov VO. Mayr H. Ioffe SL. J. Org. Chem. 2007; 72: 9134

    • For recent examples, see:
    • 55a Bou-Moreno R. Luengo-Arratta S. Pons V. Motherwell WB. Can. J. Chem. 2012; 91: 6
    • 55b Aksenov AV. Aksenov NA. Nadein ON. Aksenova IV. Synlett 2010; 2628
    • 55c Aksenov AV. Aksenov NA. Orazova NA. Aksenov DA. Dmitriev MV. Rubin M. RSC Adv. 2015; 5: 84849
    • 56a Smirnov VO. Ioffe SL. Tishkov AA. Khomutova YA. Nesterov ID. Antipin MY. Smit WA. Tartakovsky VA. J. Org. Chem. 2004; 69: 8485
    • 56b Smirnov VO. Sidorenkov AS. Khomutova YA. Ioffe SL. Tartakovsky VA. Eur. J. Org. Chem. 2009; 3066
    • 56c Mikhaylov AA. Khomutova YA. Arkhipov DE. Korlyukov AA. Ioffe SL. Mendeleev Commun. 2014; 24: 374
    • 56d Mikhaylov AA. Dilman AD. Khomutova YA. Arkhipov DE. Korlyukov AA. Ioffe SL. Eur. J. Org. Chem. 2013; 5670
  • 57 Naumova AS. Mikhaylov AA. Khomutova YA. Novikov RA. Arkhipov DE. Korlyukov AA. Ioffe SL. RSC Adv. 2014; 4: 12467
  • 58 Naumova AS. Mikhaylov AA. Struchkova MI. Khomutova YA. Tartakovsky VA. Ioffe SL. Eur. J. Org. Chem. 2012; 2219
  • 59 Wilson JE. Casarez AD. MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 11332
  • 60 Kanemasa S. Nippon Kagaku Kaishi 2000; 155
    • 61a Han X. Dong L. Geng C. Jiao P. Org. Lett. 2015; 17: 3194
    • 61b Jiang M. Feng L. Feng J. Jiao P. Org. Lett. 2017; 19: 2210
  • 62 Dong L. Geng C. Jiao P. J. Org. Chem. 2015; 80: 10992
  • 63 Nikodemiak P. Koert U. Adv. Synth. Catal. 2017; 359: 1708
    • 64a Gorbacheva EO. Tabolin AA. Novikov RA. Khomutova YA. Nelyubina YV. Tomilov YV. Ioffe SL. Org. Lett. 2013; 15: 350
    • 64b Tabolin AA. Novikov RA. Khomutova YA. Zharov AA. Stashina GA. Nelyubina YV. Tomilov YV. Ioffe SL. Tetrahedron Lett. 2015; 56: 2102
    • 64c Shved AS. Tabolin AA. Novikov RA. Nelyubina YV. Timofeev VP. Ioffe SL. Eur. J. Org. Chem. 2016; 5569
    • 64d Tabolin AA. Gorbacheva EO. Novikov RA. Khoroshutina YA. Nelyubina YV. Ioffe SL. Russ. Chem. Bull., Int. Ed. 2016; 65: 2243
    • 65a Mikhaylov AA. Dilman AD. Kunetsky RA. Khomutova YA. Struchkova MI. Korlyukov AA. Ioffe SL. Tartakovsky VA. Tetrahedron Lett. 2010; 51: 1038
    • 65b Sukhorukov AY. Kapatsyna MA. Yi TL. T. Park HR. Naumovich YA. Zhmurov PA. Khomutova YA. Ioffe SL. Tartakovsky VA. Eur. J. Org. Chem. 2014; 8148
    • 65c Naumovich YA. Buckland VE. Sen’ko DA. Nelyubina YV. Khoroshutina YA. Sukhorukov AY. Ioffe SL. Org. Biomol. Chem. 2016; 14: 3963
    • 65d Tishkov AA. Lesiv AV. Khomutova YA. Strelenko YA. Nesterov ID. Antipin MY. Ioffe SL. Denmark SE. J. Org. Chem. 2003; 68: 9477
    • 65e Dilman AD. Lyapkalo IM. Ioffe SL. Strelenko YA. Tartakovsky VA. J. Org. Chem. 2000; 65: 8826
    • 65f Tabolin AA. Lesiv AV. Ioffe SL. Synthesis 2009; 3099
    • 65g Tabolin AA. Lesiv AV. Khomutova YuA. Nelyubina YuV. Ioffe SL. Tetrahedron 2009; 65: 4578
    • 65h Zhmurov PA. Tabolin AA. Sukhorukov AYu. Lesiv AV. Klenov MS. Khomutova YuA. Ioffe SL. Tartakovsky VA. Russ. Chem. Bull. 2011; 60: 2390
    • 66a Wade PA. Pipic A. Santhanaraman M. Le HT. Chem. Commun. 2009; 3531
    • 66b Wade PA. Pipic A. Zeller M. Tsetsakos P. Beilstein J. Org. Chem. 2013; 9: 2137
    • 67a Masaki N. Hiroyasu S. Hiroyuki O. Chem. Lett. 2008; 37: 144
    • 67b Nishiuchi M. Sato H. Umemoto N. Murakami S. Chem. Lett. 2008; 37: 146
    • 67c Romashov LV. Khomutova YA. Danilenko VM. Ioffe SL. Lesiv AV. Synthesis 2010; 407
  • 68 Lu L.-Q. Cao Y.-J. Liu X.-P. An J. Yao C.-J. Ming Z.-H. Xiao W.-J. J. Am. Chem. Soc. 2008; 130: 6946
  • 69 Sukhorukov AY. Boyko YD. Nelyubina YV. Gerard S. Ioffe SL. Tartakovsky VA. J. Org. Chem. 2012; 77: 5465
  • 70 Korotaev VY. Barkov AY. Slepukhin PA. Kodess MI. Sosnovskikh VY. Mendeleev Commun. 2011; 21: 277