Synthesis 2017; 49(15): 3291-3302
DOI: 10.1055/s-0036-1588846
short review
© Georg Thieme Verlag Stuttgart · New York

Cyclizations of Alkoxyallenes: Mechanisms, Intermediates, ­Products – A Personal Account on Solved and Unsolved Problems with Unique Allene Building Blocks

Hans-Ulrich Reissig*
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany   Email: [email protected]
,
Reinhold Zimmer*
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 03 May 2017

Accepted: 05 May 2017

Publication Date:
06 June 2017 (online)


Dedicated to our friend and colleague Professor Herbert Mayr on the occasion of his 70th birthday

Abstract

The additions of lithiated alkoxyallenes to electrophiles, such as carbonyl compounds, thioketones, imines, and nitrones, provide the expected primary addition products. These alkoxyallene intermediates undergo ring-closure reactions under quite different conditions. Whereas allenyl hydroxylamine derivatives spontaneously cyclize to 1,2-oxazine derivatives, the related allenyl amines, thiols, and alcohols require, with distinct exceptions, promotion by acids, base, silver(I), or gold(I). The different mechanisms of these processes are discussed in this account. The serendipitous discovery of a novel three-component reaction of lithiated alkoxyallenes, nitriles, and carboxylic acids followed by a cyclization to pyridine derivatives is also reported and the mechanism involved is illustrated. This account also compiles exemplary examples of natural products and other compounds prepared by subsequent reactions of alkoxyallene-based cyclization products, but the fascinating ring-closing event of the allenyl intermediates is the main focus of this report.

1 Introduction

2 Cyclizations of Allenyl Hydroxylamines to 1,2-Oxazine Derivatives

3 Cyclizations of Allenyl Amines to Dihydropyrrole Derivatives

4 Cyclizations of Allenyl Imines to Pyrroles – Discovery of a New Three-Component Synthesis of Pyridines

5 Cyclizations of Allenyl Thiols to Vinylthiiranes and Dihydrothiophene Derivatives

6 Cyclizations of Allenyl Alcohols to Dihydrofuran Derivatives

7 Conclusions

 
  • References

    • 1a Hoff S. Brandsma L. Arens JF. Recl. Trav. Chim. Pays-Bas 1968; 87: 916
    • 1b For an improved preparation, see: Weiberth FJ. Hall SS. J. Org. Chem. 1985; 50: 5308
    • 2a Zimmer R. Diploma Thesis . Technische Hochschule Darmstadt; Germany: 1988
    • 2b Zimmer R. Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1988; 27: 1518 ; Angew. Chem. 1988, 100, 1576
    • 2c Zimmer R. Reissig H.-U. Liebigs Ann. Chem. 1991; 553

      Selected references:
    • 3a Zimmer R. Reissig H.-U. Synthesis 1989; 908
    • 3b Homann K. Zimmer R. Reissig H.-U. Heterocycles 1995; 40: 531
    • 3c Zimmer R. Reissig H.-U. Homann K. J. Prakt. Chem. 1995; 337: 521
    • 3d Zimmer R. Angermann J. Hain U. Hiller F. Reissig H.-U. Synthesis 1999; 1223
    • 3e Linder I. Gerhard M. Schefzig L. Andrä M. Bentz C. Reissig H.-U. Zimmer R. Eur. J. Org. Chem. 2011; 6070

      General reviews on the chemistry of alkoxyallenes:
    • 4a Zimmer R. Synthesis 1993; 165
    • 4b Reissig H.-U. Hormuth S. Schade W. Okala Amombo M. Watanabe T. Pulz R. Hausherr A. Zimmer R. J. Heterocycl. Chem. 2000; 37: 597
    • 4c Reissig H.-U. Zimmer R. Donor-Substituted Allenes . In Modern Allene Chemistry . Krause N. Hashmi AS. K. Wiley-VCH; Weinheim: 2004: 425
    • 4d Brasholz M. Reissig H.-U. Zimmer R. Acc. Chem. Res. 2009; 42: 45
    • 4e Zimmer R. Reissig H.-U. Chem. Soc. Rev. 2014; 43: 2888

    • Reviews on lithiated alkoxyallenes summarizing the work of other groups:
    • 4f Nedolya A. Tarasova O. Volostnykh OG. Albanov AL. Klyba LV. Trofimov BA. Synthesis 2011; 2192
    • 4g Tius MA. Chem. Soc. Rev. 2014; 43: 2979
  • 5 Hoff S. Brandsma L. Arens JF. Recl. Trav. Chim. Pays-Bas 1969; 88: 609
    • 6a Gange D. Magnus P. J. Am. Chem. Soc. 1978; 100: 7746
    • 6b Gange D. Magnus P. Bass L. Arnold EV. Clardy J. J. Am. Chem. Soc. 1980; 102: 2134
    • 6c Magnus P. Albaugh-Robertson P. J. Chem. Soc., Chem. Commun. 1984; 804
    • 7a Hormuth S. Reissig H.-U. Synlett 1991; 179
    • 7b Hormuth S. Reissig H.-U. J. Org. Chem. 1994; 59: 67
    • 7c Hormuth S. Schade W. Reissig H.-U. Liebigs Ann. 1996; 2001
    • 8a Schade W. Reissig H.-U. Synlett 1999; 632
    • 8b Pulz R. Cicchi S. Brandi A. Reissig H.-U. Eur. J. Org. Chem. 2003; 1153
    • 8c Helms M. Schade W. Pulz R. Watanabe T. Al-Harrasi A. Fišera L. Hlobilová I. Zahn G. Reissig H.-U. Eur. J. Org. Chem. 2005; 1003

      Reviews:
    • 9a Pfrengle F. Reissig H.-U. Chem. Soc. Rev. 2010; 39: 549
    • 9b Bouché L. Reissig H.-U. Pure Appl. Chem. 2012; 84: 23
    • 10a Bressel B. Reissig H.-U. Org. Lett. 2009; 11: 527
    • 10b Parmeggiani C. Cardona F. Giusti L. Reissig H.-U. Goti A. Chem.–Eur. J. 2013; 19: 10595
    • 10c Pecchioli T. Cardona F. Reissig H.-U. Zimmer R. Goti A. J. Org. Chem. 2017; 82: 5385
    • 11a Dumez E. Dulcère J.-P. Chem. Commun. 1998; 479
    • 11b Dumez E. Faure R. Dulcère J.-P. Eur. J. Org. Chem. 2001; 2577
  • 12 In several reactions we also observed the formation of dihydropyrrole N-oxide whose role in these transformations is still unclear.
  • 13 Okala Amombo MG. Reissig H.-U. ChemistrySelect 2016; 1: 3012
    • 14a Okala Amombo M. Hausherr A. Reissig H.-U. Synlett 1999; 1871
    • 14b Okala Amombo MG. Dissertation; Technische Universität Dresden, Germany. 2000
    • 14c Flögel O. Reissig H.-U. Synlett 2004; 895
    • 14d Okala Amombo MG. Flögel O. Kord Daoroun Kalai S. Schoder S. Warzok U. Reissig H.-U. Eur. J. Org. Chem. 2017; 1965

    • For related reactions with hydrazones followed by ring closure to dihydropyrroles, see:
    • 14e Breuil-Desvergnes V. Compain P. Vatèle J.-M. Goré J. Tetrahedron Lett. 1999; 40: 5009
    • 14f Breuil-Desvergnes V. Compain P. Vatèle J.-M. Goré J. Tetrahedron Lett. 1999; 40: 8789
    • 14g Breuil-Desvergnes V. Goré J. Tetrahedron 2001; 57: 1939
    • 14h Breuil-Desvergnes V. Goré J. Tetrahedron 2001; 57: 1951

    • For related reactions with aziridines followed by ring closure to piperidine derivatives, see:
    • 14i Prisyazhnyuk V. Jachan M. Brüdgam I. Zimmer R. Reissig H.-U. Collect. Czech. Chem. Commun. 2009; 74: 1069
    • 15a Flögel O. Okala Amombo MG. Reissig H.-U. Zahn G. Brüdgam I. Hartl H. Chem.–Eur. J. 2003; 9: 1405
    • 15b Kaden S. Brockmann M. Reissig H.-U. Helv. Chim. Acta 2005; 88: 1826
    • 15c Hausherr A. Dissertation . Freie Universität Berlin; Germany: 2001
    • 15d Chowdhury MA. Reissig H.-U. Synlett 2006; 2383
    • 15e Kaden S. Reissig H.-U. Org. Lett. 2006; 8: 4763
    • 16a This conditions of gold catalysis have first been applied to other allene cyclizations: Gockel B. Krause N. Org. Lett. 2006; 8: 4485

    • For earlier examples of silver catalysis in allene chemistry, see:
    • 16b Leandri G. Monti H. Bertrand M. Tetrahedron 1974; 30: 289
    • 16c Olsson L.-I. Claesson A. Synthesis 1979; 743
    • 16d Marshall JA. Bartley GS. J. Org. Chem. 1994; 59: 7169
    • 17a Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 734

    • Reviews dealing with Baldwin’s rules:
    • 17b Johnson CD. Acc. Chem. Res. 1993; 26: 476
    • 17c Alabugin IV. Gilmore K. Chem. Commun. 2013; 49: 11246
    • 17d Gilmore K. Mohamed RK. Alabugin IV. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2016; 6: 487
    • 18a Walsh AD. J. Chem. Soc. 1953; 2266
    • 18b Hoffmann R. Tetrahedron 1966; 22: 521
    • 18c Lam B. Johnson RP. J. Am. Chem. Soc. 1983; 105: 7479
    • 18d Merchán M. Andrés J. Nebot-Gil I. Silla E. Tomás F. J. Phys. Chem. 1985; 89: 4769
    • 18e Patel DS. Bharatan PV. J. Org. Chem. 2011; 76: 2558 ; and references cited therein
  • 19 For a better understanding of the experimental observations as summarized in Scheme 8, we asked the groups of J. A. Murphy and T. Tuttle (University of Strathclyde, Glasgow) to perform high-level DFT calculations including counterions and solvents. Their computational results support the conclusion that the ring closure can proceed by an ionic cyclization (Scheme 9); Murphy JA. private communication. 2017
  • 20 Schoder S. Kord Daoroun Kalai S. Reissig H.-U. Chem.–Eur. J. 2017; DOI: 10.1002/chem.201701108.
    • 21a Gwiazda M. Reissig H.-U. Synlett 2006; 1683
    • 21b Gwiazda M. Reissig H.-U. Synthesis 2008; 990
  • 22 Recent review: Zimmer R. Reissig H.-U. Allenes in Multicomponent Synthesis of Heterocycles. In Multicomponent Reactions in Organic Synthesis. Zhu J. Wang Q. Wang M.-X. Wiley-VCH; Weinheim: 2015: 301
  • 23 Flögel O. Dash J. Brüdgam I. Hartl H. Reissig H.-U. Chem.–Eur. J. 2004; 10: 4283

    • Selected references:
    • 24a Dash J. Lechel T. Reissig H.-U. Org. Lett. 2007; 9: 5541
    • 24b Lechel T. Dash J. Brüdgam I. Reissig H.-U. Eur. J. Org. Chem. 2008; 3647
    • 24c Lechel T. Dash J. Eidamshaus C. Brüdgam I. Lentz D. Reissig H.-U. Org. Biomol. Chem. 2010; 8: 3007
    • 24d Lechel T. Dash J. Hommes P. Lentz D. Reissig H.-U. J. Org. Chem. 2010; 75: 726
    • 24e Gholap SL. Hommes P. Neuthe K. Reissig H.-U. Org. Lett. 2013; 15: 318
    • 24f Bera MK. Gholap SL. Hommes P. Neuthe K. Trawny D. Rabe JP. Lentz D. Zimmer R. Reissig H.-U. Adv. Synth. Catal. 2013; 355: 3463

    • Reviews:
    • 24g Lechel T. Reissig H.-U. Pure Appl. Chem. 2010; 82: 1835
    • 24h Lechel T. Reissig H.-U. Synthesis and Reactivity of Pyridin-4-ols Based on the Three-Component Reaction of Alkoxyallenes, Nitriles and Carboxylic Acids. In Targets in Heterocyclic Systems – Chemistry and Properties. Vol. 20; Attanasi OA. Merino P. Spinelli D. Italian Society of Chemistry; Rome: 2016: 1-32
  • 25 Dash J. Trawny D. Rabe JP. Reissig H.-U. Synlett 2015; 26: 1486
    • 26a Lechel T. Möhl S. Reissig H.-U. Synlett 2009; 1059
    • 26b Lechel T. Reissig H.-U. Eur. J. Org. Chem. 2010; 2555
    • 26c Bera MK. Reissig H.-U. Synthesis 2010; 2129
    • 26d Zimmer R. Lechel T. Rancan G. Bera MK. Reissig H.-U. Synlett 2010; 1793
    • 26e Bera MK. Dominguez M. Hommes P. Reissig H.-U. Beilstein J. Org. Chem. 2014; 10: 394
    • 27a Lechel T. Lentz D. Reissig H.-U. Chem.–Eur. J. 2009; 15: 5432
    • 27b Lechel T. Gerhard M. Trawny D. Brusilowskij B. Schefzig L. Zimmer R. Rabe JP. Lentz D. Schalley CA. Reissig H.-U. Chem.–Eur. J. 2011; 17: 7480
    • 28a Dash J. Reissig H.-U. Chem.–Eur. J. 2009; 15: 6811
    • 28b Hommes P. Fischer C. Lindner C. Zipse H. Reissig H.-U. Angew. Chem. Int. Ed. 2014; 53: 7647 ; Angew. Chem. 2014, 126, 7778
    • 28c Hommes P. Reissig H.-U. Asian J. Org. Chem. 2016; 5: 1033
    • 29a De Rache A. Gueddouda NM. Bourdoncle A. Hommes P. Reissig H.-U. Mergny J.-L. Chem.–Eur. J. 2016; 22: 12651
    • 29b Aroua S. Todorova TK. Hommes P. Chamoreau L.-M. Reissig H.-U. Mougel V. Fontecave M. Inorg. Chem. 2017; 56: 5930
    • 29c Aroua S. Todorova TK. Mougel V. Hommes P. Reissig H.-U. Fontecave M. ChemCatChem 2017; 9 DOI: 10.1002/cctc.201700428.
    • 29d Klein J. Stuckmann A. Sobottka S. Suntrup L. van der Meer M. Hommes P. Reissig H.-U. Sarkar B. Chem.–Eur. J. 2017; DOI: 10.1002/chem.201701431.
  • 30 Review: Fišera L. Huisgen R. Kalwinsch I. Langhals E. Li X. Mlostoń G. Polborn K. Rapp J. Sicking W. Sustmann R. Pure Appl. Chem. 1996; 68: 789
  • 31 Mlostoń, G.; Schütz, R.; Reissig, H.-U. unpublished results, Freie Universität Berlin, 2004.
  • 32 Jasiński M. Mlostoń G. Stolarski M. Costa W. Domínguez M. Reissig H.-U. Chem. Asian J. 2014; 9: 2641
  • 33 Romański R. Mlostoń G. Synthesis 2002; 1355

    • For gold-catalyzed 5-endo-trig cyclizations of allenyl thiols without alkoxy groups, see:
    • 34a experimental study: Morita N. Krause N. Angew. Chem. Int. Ed. 2006; 75: 1897 ;Angew. Chem. 2006, 118, 1939
    • 34b Computational study: Ando K. J. Org. Chem. 2010; 75: 8512
  • 35 Flögel O. Reissig H.-U. Eur. J. Org. Chem. 2004; 2797
    • 36a Brasholz M. Reissig H.-U. Synlett 2007; 1294
    • 36b Dugovič B. Reissig H.-U. Synlett 2008; 769
    • 36c Brasholz M. Dugovič B. Reissig H.-U. Synthesis 2010; 3855
    • 37a Brasholz M. Reissig H.-U. Angew. Chem. Int. Ed. 2007; 46: 1634 ; Angew. Chem. 2007, 119, 1659
    • 37b Brasholz M. Reissig H.-U. Eur. J. Org. Chem. 2009; 3595
    • 38a Arnold T. Orschel B. Reissig HU. Angew. Chem., Int. Ed. Engl. 1992; 31: 1033 ; Angew. Chem. 1992, 104, 1084
    • 38b Hausherr A. Orschel B. Scherer S. Reissig H.-U. Synthesis 2001; 1377
    • 38c Zimmer R. Orschel B. Scherer S. Reissig H.-U. Synthesis 2002; 1553
  • 39 Schmiedel VM. Stefani S. Reissig H.-U. Beilstein J. Org. Chem. 2013; 9: 2564
  • 40 We cannot exclude that a similar spontaneous cyclization occurs with other allenyl alcohols if they are stored for a longer period in the solvents mentioned above.
  • 41 The DFT calculations19 were also applied to the cyclizations of allenyl alcohols to dihydrofurans under basic conditions. They did not give any indication for an involved electron transfer. The calculated barriers of ring closure show that the anionic process is feasible.

    • Reviews on cyclizations of allenes without alkoxy groups:
    • 42a Krause N. Hoffmann-Röder A. Canisius J. Synthesis 2002; 1759
    • 42b Tius MA. Cyclizations of Allenes . In Modern Allene Chemistry . Krause N. Hashmi AS. K. Wiley-VCH; Weinheim: 2004: 817
    • 42c Ma S. Acc. Chem. Res. 2009; 42: 1679
    • 42d Alcaide B. Almendros P. Aargoncillo C. Chem. Soc. Rev. 2010; 39: 783
    • 42e Krause N. Winter C. Chem. Rev. 2011; 111: 1994
    • 42f Dion I. Beauchemin AM. Angew. Chem. Int. Ed. 2011; 50: 8233 ; Angew. Chem. 2011, 123, 8383
    • 42g Majumdar KC. Samanta S. Sinha B. Synthesis 2012; 44: 817
    • 42h Paz Muñoz M. Chem. Soc. Rev. 2014; 43: 3164