Synthesis 2017; 49(15): 3215-3223
DOI: 10.1055/s-0036-1588843
short review
© Georg Thieme Verlag Stuttgart · New York

Solid Organozinc Pivalates: A New Class of Zinc Organometallics with Greatly Enhanced Air- and Moisture-Stability

Yi-Hung Chen
Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstr. 5-13, 81377 München, Germany   Email: [email protected]
,
Mario Ellwart
Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstr. 5-13, 81377 München, Germany   Email: [email protected]
,
Vladimir Malakhov
Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstr. 5-13, 81377 München, Germany   Email: [email protected]
,
Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstr. 5-13, 81377 München, Germany   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 03 April 2017

Accepted after revision: 28 April 2017

Publication Date:
29 May 2017 (online)


Dedicated to Prof. Herbert Mayr on the occasion of his 70th birthday

Abstract

Organozinc species are powerful reagents for performing carbon–carbon and carbon–heteroatom bond-forming reactions in the presence of a transition-metal catalyst. However, extended applications of zinc reagents have been hampered by their moderate air- and moisture­-stability. This short review presents our recent developments on the preparation of solid aryl, benzyl, heteroaryl, allyl zinc pivalates and zinc amide enolate reagents with greatly enhanced stability toward to air and moisture.

1 Introduction

2 Preparation of Organozinc Pivalates

2.1 Using Organic Halides as Substrates

2.2 Using a Directed Metalation on Functionalized Arenes and Heteroarenes

2.3 Preparation of Solid Allylic Zinc Pivalates

3 General Reactivity Patterns of Organozinc Pivalates

3.1 General Aspects

3.2 Transition-Metal-Catalyzed Cross-Couplings

3.3 Other Carbon–Carbon Bond-Forming Reactions Using Organozinc Pivalates

3.4 Preparation and Reactions of Solid, Salt-Stabilized Zinc Amide Enolates as New, Convenient Reformatsky Reagents

4 Conclusion

 
  • References

  • 1 Frankland E. Justus Liebigs Ann. Chem. 1849; 71: 171
  • 2 Frankland E. J. Chem. Soc. 1850; 263
  • 3 Diethylzinc was classified as extremely flammable, corrosive and dangerous for the environment by Dangerous Substances Directive. Regulations (EC) No 1271/2008 of the European Parliament and of the Council. Official J. Eur. Union 2008, 1-1355.
    • 4a Hupe E. Knochel P. Org. Lett. 2001; 3: 127
    • 4b Boudier A. Hupe E. Knochel P. Angew. Chem. Int. Ed. 2000; 39: 2294
  • 5 Knochel P. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations. Vol. 3. O’Neil IA. Thieme; Stuttgart: 2004: 5-90
    • 7a Negishi E.-i. Acc. Chem. Res. 1982; 15: 340
    • 7b Negishi E.-i. Angew. Chem. Int. Ed. 2011; 50: 6738
    • 8a Dagousset G. Francois C. Leon T. Blanc R. Sansiaume-Dagousset E. Knochel P. Synthesis 2014; 46: 3133
    • 8b Metal-Catalyzed Cross-Coupling Reactions and More . Vol. 1. de Meijere A. Bräse S. Oestreich M. Wiley-VCH; Weinheim: 2014: 133-278
    • 8c Benischke AD. Ellwart M. Becker MR. Knochel P. Synthesis 2016; 48: 1101
  • 9 O’Donovan MR. Mee CD. Fenner S. Teasdale A. Phillips DH. Mutat. Res. 2011; 724: 1
    • 10a Boersma J. Noltes JG. J. Organomet. Chem. 1968; 13: 291
    • 10b Boersma J. Verbeek F. Noltes JG. J. Organomet. Chem. 1971; 33: C53
  • 11 Charette AB. Molinaro C. Brochu C. J. Am. Chem. Soc. 2001; 123: 12160
  • 12 Manolikakes SM. Ellwart M. Stathakis CI. Knochel P. Chem. Eur. J. 2014; 20: 12289
  • 13 Bernhardt S. Manolikakes G. Kunz T. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9205
  • 14 Piller FM. Metzger A. Schade MA. Haag BA. Gavryushin A. Knochel P. Chem. Eur. J. 2009; 15: 7192
    • 15a Krasovskiy A. Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
    • 15b Klatt T. Markiewicz JT. Saemann C. Knochel P. J. Org. Chem. 2014; 79: 4253
  • 16 Hernán-Gómez A. Herd E. Hevia E. Kennedy AR. Knochel P. Koszinowski K. Manolikakes SM. Mulvey RE. Schnegelsberg C. Angew. Chem. Int. Ed. 2014; 53: 2706
    • 17a Anctil EJ.-G. Snieckus V. J. Organomet. Chem. 2002; 653: 150
    • 17b Mulvey RE. Mongin F. Uchiyama M. Kondo Y. Angew. Chem. Int. Ed. 2007; 46: 3802
    • 17c Haag B. Mosrin M. Ila H. Malakhov V. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
    • 17d Snieckus V. Anctil EJ.-G. In Metal-Catalyzed Cross-Coupling Reactions and More . Vol. 3. de Meijere A. Brase S. Oestreich M. Wiley-VCH; Weinheim: 2014: 1067-1133
  • 18 Stathakis CI. Bernhardt S. Quint V. Knochel P. Angew. Chem. Int. Ed. 2012; 51: 9428
  • 19 Krasovskiy A. Krasovskaya V. Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
  • 20 Stathakis CI. Manolikakes SM. Knochel P. Org. Lett. 2013; 15: 1302
    • 21a Mosrin M. Knochel P. Org. Lett. 2009; 11: 1837
    • 21b Mosrin M. Monzon G. Bresser T. Knochel P. Chem. Commun. 2009; 5615
    • 21c Bresser T. Mosrin M. Monzon G. Knochel P. J. Org. Chem. 2010; 75: 4686
    • 22a Bresser T. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 1914
    • 22b Duez S. Steib AK. Manolikakes SM. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 7686
  • 23 Colombe JR. Bernhardt S. Stathakis C. Buchwald SL. Knochel P. Org. Lett. 2013; 15: 5754
    • 24a Courtois G. Al-Arnaout A. Miginiac L. Tetrahedron Lett. 1985; 26: 1027
    • 24b Villieras J. Rambaud M. Synthesis 1982; 924
    • 24c Dembele YA. Belaud C. Hitchcock P. Villieras J. Tetrahedron: Asymmetry 1992; 3: 351
    • 24d Nyzam V. Belaud C. Zammattio F. Villieras J. Tetrahedron: Asymmetry 1996; 7: 1835
    • 25a Ren H. Dunet G. Mayer P. Knochel P. J. Am. Chem. Soc. 2007; 129: 5376
    • 25b Helm MD. Mayer P. Knochel P. Chem. Commun. 2008; 1916
    • 25c Saemann C. Knochel P. Synthesis 2013; 45: 1870
  • 26 Ellwart M. Knochel P. Angew. Chem. Int. Ed. 2015; 54: 10662
  • 27 Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A. Brase S. Oestreich M. Wiley-VCH; Weinheim: 2014: 1576
  • 28 Farina V. Krishnan B. J. Am. Chem. Soc. 1991; 113: 9585
  • 29 Hayashi T. Konishi M. Kobori Y. Kumada M. Higuchi T. Hirotsu K. J. Am. Chem. Soc. 1984; 106: 158
  • 30 Guram AS. Buchwald SL. J. Am. Chem. Soc. 1994; 116: 7901
    • 31a Hadei N. Kantchev EA. B. O’Brien CJ. Organ MG. Org. Lett. 2005; 7: 3805
    • 31b McCann LC. Hunter HN. Clyburne JA. C. Organ MG. Angew. Chem. Int. Ed. 2012; 51: 7024
  • 32 Seechurn CC. C. J. Kitching MO. Colacot TJ. Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 33a Suzuki A. Pure Appl. Chem. 1991; 63: 419
    • 33b Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
    • 33c Suzuki A. J. Organomet. Chem. 1999; 576: 147
  • 34 Negishi E.-i. King AO. Okukado N. J. Org. Chem. 1977; 42: 1821
    • 35a Knappkea CE. I. von Wangelin AJ. Chem. Soc. Rev. 2011; 40: 4948
    • 35b Corriu RJ. P. Masse J. P. J. Chem. Soc., Chem. Commun. 1972; 144
    • 35c Tamao K. Sumitani K. Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
  • 36 Hatanaka Y. Hiyama T. J. Org. Chem. 1988; 53: 918
    • 37a Denmark SE. Regens CS. Acc. Chem. Res. 2008; 41: 1486
    • 37b Denmark SE. Yang S.-M. J. Am. Chem. Soc. 2002; 124: 2102
  • 38 Huang X. Anderson KW. Zim D. Jiang L. Klapars A. Buchwald SL. J. Am. Chem. Soc. 2003; 125: 6653
    • 39a Gosmini C. Begouin J.-M. Moncomble A. Chem. Commun. 2008; 3221
    • 39b Cahiez G. Moyeux A. Chem. Rev. 2010; 110: 1435
    • 39c Gosmini C. Moncomble A. Isr. J. Chem. 2010; 50: 568
    • 40a Hammann JM. Steib AK. Knochel P. Org. Lett. 2014; 16: 6500
    • 40b Hammann JM. Haas D. Knochel P. Angew. Chem. Int. Ed. 2015; 54: 4478
    • 40c Hofmayer MS. Hammann JM. Haas D. Knochel P. Org. Lett. 2016; 18: 6456
    • 40d Hammann JM. Haas D. Tüllmann C.-P. Karaghiosoff K. Knochel P. Org. Lett. 2016; 18: 4778
  • 41 Haas D. Hammann JM. Lutter FH. Knochel P. Angew. Chem. Int. Ed. 2016; 55: 3809
  • 42 Hammann JM. Lutter FH. Haas D. Knochel P. Angew. Chem. Int. Ed. 2017; 56: 1082
    • 43a Knochel P. Yeh MC. P. Berk SC. Talbert J. J. Org. Chem. 1988; 53: 2390
    • 43b Knochel P. Perea JJ. A. Jones P. Tetrahedron 1998; 54: 8275
    • 43c Boudier A. Bromm LO. Lotz M. Knochel P. Angew. Chem. Int. Ed. 2000; 39: 4414
    • 43d Knochel P. Millot N. Rodriguez AL. Tucker CE. Org. React. 2001; 58: 417
  • 44 Normant JF. Alexakis A. Synthesis 1981; 841
  • 45 Shannon J. Bernier D. Rawson D. Woodward S. Chem. Commun. 2007; 3945
  • 46 Le Notre J. Allen JC. Frost CG. Chem. Commun. 2008; 3795
    • 47a Takaya Y. Ogasawara M. Hayashi T. Sakai M. Miyaura N. J. Am. Chem. Soc. 1998; 120: 5579
    • 47b Hayashi T. Bull. Chem. Soc. Jpn. 2004; 77: 13
    • 48a Cozzi PG. Angew. Chem. Int. Ed. 2007; 46: 2568
    • 48b Haraguchi R. Matsubara S. Synthesis 2014; 46: 2272
  • 49 Chen Y.-H. Ellwart M. Toupalas G. Ebe Y. Knochel P. Angew. Chem. Int. Ed. 2017; 56: 4612
  • 50 Velezheva VS. Kornienko AG. Topilin SV. Turashev AD. Peregudov AS. Brennan PJ. J. Heterocycl. Chem. 2006; 43: 873