Synthesis 2017; 49(06): 1158-1167
DOI: 10.1055/s-0036-1588358
short review
© Georg Thieme Verlag Stuttgart · New York

First-Row Late Transition Metals for Catalytic (Formal) Hydro­amination of Unactivated Alkenes

Clément Lepori
a  Univ Paris-sud, Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Bâtiment 420, Rue du doyen Georges Poitou, 91405 Orsay cedex, France
,
Jérôme Hannedouche*
a  Univ Paris-sud, Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Bâtiment 420, Rue du doyen Georges Poitou, 91405 Orsay cedex, France
b  CNRS, 91405 Orsay cedex, France   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 04 September 2016

Accepted after revision: 27 October 2016

Publication Date:
29 November 2016 (online)


Abstract

This short review provides an overview of the most noteworthy achievements in the area of hydroamination and formal hydro­amination of unactivated alkenes catalysed by zinc-, copper-, nickel-, cobalt-, and iron-based systems. The relevant literature from 2009 until mid-2016 has been covered.

1 Introduction

2 Activation Strategies

3 Zinc-Based Catalytic Systems

4 Copper-Based Catalytic Systems

5 Nickel-Based Catalytic System

6 Cobalt-Based Catalytic System

7 Iron-Based Catalytic Systems

8 Outlook

 
  • References

    • 1a Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
    • 1b Hesp KD, Stradiotto M. ChemCatChem 2010; 2: 1192
    • 1c Hannedouche J In Science of Synthesis Knowledge Updates . Vol. 2013/4. Banert K, Carreira EM, Marek I, Reissig H.-U, Steel PG. Thieme; Stuttgart: 2013: 1
    • 1d Li W, Zhang X, Reznichenko A, Nawara-Hultzsch A, Hultzsch K In Stereoselective Formation of Amines . Li W, Zhang X. Springer; Heidelberg: 2014: 191
    • 1e Rodriguez-Ruiz V, Carlino R, Bezzenine-Lafollée S, Gil R, Prim D, Schulz E, Hannedouche J. Dalton Trans. 2015; 44: 12029
    • 1f Huang L, Arndt M, Gooßen K, Heydt H, Gooßen LJ. Chem. Rev. 2015; 115: 2596
    • 1g Bernoud E, Lepori C, Mellah M, Schulz E, Hannedouche J. Catal. Sci. Technol. 2015; 5: 2017

      For some recent strategies towards these goals:
    • 2a MacDonald MJ, Schipper DJ, Ng PJ, Moran J, Beauchemin AM. J. Am. Chem. Soc. 2011; 133: 20100
    • 2b Ickes AR, Ensign SC, Gupta AK, Hull KL. J. Am. Chem. Soc. 2014; 136: 11256
    • 2c Gurak JA. Jr, Yang KS, Liu Z, Engle KM. J. Am. Chem. Soc. 2016; 138: 5805
    • 3a Julian LD, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 13813
    • 3b Bernoud E, Oulié P, Guillot R, Mellah M, Hannedouche J. Angew. Chem. Int. Ed. 2014; 53: 4930

      For seminal reports:
    • 4a Zhang Z, Du Lee S, Widenhoefer RA. J. Am. Chem. Soc. 2009; 131: 5372
    • 4b Reznichenko AL, Nguyen HN, Hultzsch KC. Angew. Chem. Int. Ed. 2010; 49: 8984
    • 5a Utsunomiya M, Kuwano R, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 5608
    • 5b Utsunomiya M, Hartwig JF. J. Am. Chem. Soc. 2004; 126: 2702
    • 5c Nguyen TM, Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 9588
    • 5d Ensign SC, Vanable EP, Kortman GD, Weir LJ, Hull KL. J. Am. Chem. Soc. 2015; 137: 13748
  • 6 Taylor JG, Whittall N, Hii KK. Org. Lett. 2006; 8: 3561
  • 7 Komeyama K, Morimoto T, Takaki K. Angew. Chem. Int. Ed. 2006; 45: 2938
  • 8 Ohmiya H, Moriya T, Sawamura M. Org. Lett. 2009; 11: 2145
  • 9 Shigehisa H, Aoki T, Yamaguchi S, Shimizu N, Hiroya K. J. Am. Chem. Soc. 2013; 135: 10306
    • 10a Miki Y, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 10830
    • 10b Zhu S, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
  • 11 Huehls CB, Lin A, Yang J. Org. Lett. 2014; 16: 3620
  • 12 Gui J, Pan C.-M, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan S, Baran PS. Science (Washington, D. C.) 2015; 348: 886
  • 13 In this case, the nitro group of the nitrogen partner is also activated via a reduction to a nitroso intermediate.
  • 14 Zulys A, Dochnahl M, Hollmann D, Löhnwitz K, Herrmann J.-S, Roesky PW, Blechert S. Angew. Chem. Int. Ed. 2005; 44: 7794
  • 15 Dochnahl M, Pissarek J.-W, Blechert S, Löhnwitz K, Roesky PW. Chem. Commun. 2006; 3405
    • 16a Löhnwitz K, Molski MJ, Lühl A, Roesky PW, Dochnahl M, Blechert S. Eur. J. Inorg. Chem. 2009; 1369
    • 16b Dochnahl M, Löhnwitz K, Lühl A, Pissarek J.-W, Biyikal M, Roesky PW, Blechert S. Organometallics 2010; 29: 2637
    • 16c Jenter J, Lühl A, Roesky PW, Blechert S. J. Organomet. Chem. 2011; 696: 406
  • 17 Pissarek J.-W, Schlesiger D, Roesky PW, Blechert S. Adv. Synth. Catal. 2009; 351: 2081
    • 18a Mukherjee A, Sen TK, Ghorai PKr, Samuel PP, Schulzke C, Mandal SK. Chem. Eur. J. 2012; 18: 10530
    • 18b Mukherjee A, Sen TK, Ghorai PKr, Mandal SK. Organometallics 2013; 32: 7213
  • 19 Horrillo-Martinez P, Hultzsch KC. Tetrahedron Lett. 2009; 50: 2054
    • 20a Turnpenny BW, Hyman KL, Chemler SR. Organometallics 2012; 31: 7819
    • 20b Michon C, Medina F, Capet F, Roussel P, Agbossou-Niedercorn F. Adv. Synth. Catal. 2010; 35: 3293
  • 21 Ohmiya H, Yoshida M, Sawamura M. Synlett 2010; 2136
  • 22 Blieck R, Bahri J, Taillefer M, Monnier F. Org. Lett. 2016; 18: 1482
  • 23 For a historical background and a full story account of copper-catalysed formal hydroamination using hydroxylamine esters: Pirnot MT, Wang Y.-M, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 48
    • 24a Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
    • 24b Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
    • 25a Corpet M, Gosmini C. Synthesis 2014; 46: 2258
    • 25b Yan X, Yang X, Xi C. Catal. Sci. Technol. 2014; 4: 4169
    • 25c Dong X., Liu Q., Dong Y., Liu H.; Chem. Eur. J.; in press; DOI: 10.1002/chem.201601607.

      For a selection of related strategies reported for the C–N bond formation by copper-catalysed electrophilic amination of alkenes:
    • 26a Rucker RP, Whittaker AM, Dang H, Lalic G. J. Am. Chem. Soc. 2012; 134: 6571
    • 26b Matsuda N, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2013; 135: 4934
    • 26c Sakae R, Hirano K, Miura M. J. Am. Chem. Soc. 2015; 137: 6460
    • 26d Xi Y, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 6703
  • 27 For a recent review on enantioselective copper-catalysed functionalisation of unactivated alkenes: Sorádová Z, Šebesta R. ChemCatChem 2016; 8: 2581
  • 28 Miki Y, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 1498
  • 29 Niljianskul N, Zhu S, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 1638
  • 30 Zhu S, Buchwald SL. J. Am. Chem. Soc. 2014; 136: 15913
  • 31 Bandar JS, Pirnot MT, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 14812
  • 32 Campbell MJ, Johnson JS. Org. Lett. 2007; 9: 1521
  • 33 For a detailed computational exploration of the mechanism: Tobisch S. Chem. Eur. J. 2016; 22: 8290
  • 34 Niu D, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 9716
  • 35 Yang Y, Shi S.-L, Niu D, Liu P, Buchwald SL. Science (Washington, D. C.) 2015; 349: 62
  • 36 Xi Y, Butcher TW, Zhang J, Hartwig JF. Angew. Chem. Int. Ed. 2016; 55: 776

    • For specific definition of the term ‘auto-tandem’ or ‘self-relay’ catalysis, see:
    • 37a Fogg DE, dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365
    • 37b Patil NT, Shinde VS, GajulaShindoh B. Org. Biomol. Chem. 2012; 10: 211
    • 38a Shi S.-L, Buchwald SL. Nat. Chem. 2015; 7: 38
    • 38b Zhu S, Niljianskul N, Buchwald SL. Nat. Chem. 2016; 8: 144
    • 38c Shi S.-L, Wong ZL, Buchwald SL. Nature (London) 2016; 532: 353
    • 39a Biloski AJ, Ganem B. Synthesis 1983; 537
    • 39b Berman AM, Johnson JS. J. Org. Chem. 2006; 71: 219
  • 40 For a recent review on the amine synthesis via transition-metal-catalysed hydrosilylation methodologies: Li B, Sortais J.-B, Darcel C. RSC Adv. 2016; 6: 57603
  • 41 Pawlas J, Nakao Y, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 3369

    • For some early works:
    • 42a Baker R, Cook AH, Halliday DE, Smith TN. J. Chem. Soc., Perkin Trans. 2 1974; 1511
    • 42b Baker R, Onions A, Popplestone RJ, Smith TN. J. Chem. Soc., Perkin Trans. 2 1975; 1133
  • 43 Shigehisa H, Koseki N, Shimizu N, Fujisawa M, Niitsu M, Hiroya K. J. Am. Chem. Soc. 2014; 136: 13534
  • 44 Shigehisa H, Aoki T, Yamaguchi S, Shimizu N, Hiroya K. J. Am. Chem. Soc. 2013; 135: 10306
  • 45 Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
    • 46a Michaux J, Terrasson V, Marque S, Wehbe J, Prim D, Campagne J.-M. Eur. J. Org. Chem. 2007; 2601
    • 46b Jung MS, Kim WS, Shin YH, Jin HJ, Kim YS, Kang EJ. Org. Lett. 2012; 14: 6262
    • 46c Cheng X, Xia Y, Wei H, Xu B, Zhang C, Li Y, Qian G, Zhang X, Li K, Li W. Eur. J. Org. Chem. 2008; 1929
    • 47a Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304
    • 47b Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature (London) 2014; 516: 343
    • 48a Janzen EG. Acc. Chem. Res. 1971; 4: 31
    • 48b Kato K, Mukaiyama T. Chem. Lett. 1992; 21: 1137
    • 48c Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
  • 49 Nakazawa H, Itazaki M. Top. Organomet. Chem. 2011; 33: 27
  • 50 As an alternative pathway, the authors have proposed that the hydroamination product might also originate from proton transfer between a [Fen]–H species and the oxygen-centred radical, followed by single-electron reduction by a [Fen-1] species.

    • For a historical background and a full presentation of this work, see
    • 51a Villa M, von Wangelin AJ. Angew. Chem. Int. Ed. 2015; 54: 11906
    • 51b Ref. 45.
  • 52 Obradors C, Martinez RM, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 4962
    • 53a Zhu K, Shaver MP, Thomas SP. Chem. Asian J. 2016; 11: 977
    • 53b Zhu K, Shaver MP, Thomas SP. Chem. Sci. 2016; 7: 3031