Synthesis 2016; 48(11): 1607-1615
DOI: 10.1055/s-0035-1561858
short review
© Georg Thieme Verlag Stuttgart · New York

Diastereo- and Enantioselective Synthesis of Polyfunctionalized Diquinanes, Hydrindanes, and Decalins Bearing a Hydroxyl Group at the Ring Junction

Clément F. Heinrich
Université de Strasbourg, Institut de Chimie – UMR 7177, 1 rue Blaise Pascal, BP296/R8, 67008 Strasbourg-Cedex, France   Email: [email protected]
,
Clovis Peter
Université de Strasbourg, Institut de Chimie – UMR 7177, 1 rue Blaise Pascal, BP296/R8, 67008 Strasbourg-Cedex, France   Email: [email protected]
,
Laurence Miesch
Université de Strasbourg, Institut de Chimie – UMR 7177, 1 rue Blaise Pascal, BP296/R8, 67008 Strasbourg-Cedex, France   Email: [email protected]
,
Philippe Geoffroy
Université de Strasbourg, Institut de Chimie – UMR 7177, 1 rue Blaise Pascal, BP296/R8, 67008 Strasbourg-Cedex, France   Email: [email protected]
,
Michel Miesch*
Université de Strasbourg, Institut de Chimie – UMR 7177, 1 rue Blaise Pascal, BP296/R8, 67008 Strasbourg-Cedex, France   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 21 January 2016

Accepted after revision: 04 March 2016

Publication Date:
27 April 2016 (online)


Abstract

Bicyclo[3.3.0]octan-1-ol (diquinane ring system), bicyclo[4.3.0]nonan-1-ol (hydrindane ring system), and bicyclo[4.4.0]decan-1-ol (decalin ring system) belong to the medium-sized rings family which represent important scaffolds of numerous natural products. Thus, the development of new routes leading to such scaffolds is of importance because such carbocycles are ubiquitous in numerous biologically active compounds. This short review will focus on the main approaches reported since 2000, leading to these bicyclic scaffolds with high diastereo- and/or enantioselectivities.

1 Introduction

2 Diastereoselective Approaches

3 Diastereo- and Enantioselective Catalytic Approaches

4 Conclusion

 
  • References

    • 1a Rukachaisirikul V, Tansakul C, Saithong S, Pakawatchai C, Isaka M, Suvannakad R. J. Nat. Prod. 2005; 68: 1674
    • 1b Chang C.-H, Wen Z.-H, Wang S.-K, Duh C.-Y. J. Nat. Prod. 2008; 71: 619
    • 2a Heasley B. Chem. Eur. J. 2012; 18: 3092
    • 2b Shukla YJ, Khan IA, Geoffroy P, Miesch M. Stud. Nat. Prod. Chem. 2013; 40: 327
  • 3 Pranithanchai W, Karalai C, Ponglimanont C, Subhadhirasakul S, Chantrapromma K. Phytochemistry 2009; 70: 300
  • 4 Zhang J, Li Y, Zhu R, Li L, Wang Y, Zhou J, Qiao Y, Zhang Z, Lou H. J. Nat. Prod. 2015; 78: 208
    • 5a Molander GA, Le Huérou Y, Brown GA. J. Org. Chem. 2001; 66: 4511
    • 5b Molander GA, Czako B, Rheam M. J. Org. Chem. 2007; 72: 1755
  • 6 Kakiuchi K, Fujioka Y, Yamamura H, Tsutsumi K, Morimoto T, Kurosawa H. Tetrahedron Lett. 2001; 42: 7595
    • 7a Wender PA, Gamber GG, Hubbard RD, Zhang L. J. Am. Chem. Soc. 2002; 124: 2876
    • 7b Jiao L, Yuan C, Yu Z.-X. J. Am. Chem. Soc. 2008; 130: 4421
    • 8a Huddleston RR, Krische MJ. Org. Lett. 2003; 5: 1143
    • 8b Koech PK, Krische MJ. Org. Lett. 2004; 6: 691
  • 9 Chiu P, Szeto CP, Geng Z, Cheng KF. Org. Lett. 2001; 3: 1901
  • 10 Chiu P, Szeto CP, Geng Z, Cheng KF. Tetrahedron Lett. 2001; 42: 4091
  • 11 Chiu P, Leung SK. Chem. Commun. 2004; 2308
  • 12 Chung WK, Chiu P. Synlett 2005; 55
  • 13 Ressault B, Jaunet A, Geoffroy P, Goudedranche S, Miesch M. Org. Lett. 2012; 14: 366
  • 14 Saito N, Sugimura Y, Sato Y. Org. Lett. 2010; 12: 3494
  • 15 Beauseigneur A, Ericsson C, Renaud P, Schenk K. Org. Lett. 2009; 11: 3778
    • 16a Wendling F, Miesch M. Org. Lett. 2001; 3: 2689
    • 16b Klein A, Miesch M. Tetrahedron Lett. 2003; 44: 4483
    • 16c Miesch M. Synthesis 2004; 746
    • 16d Mota AJ, Klein A, Wendling F, Dedieu A, Miesch M. Eur. J. Org. Chem. 2005; 4346
    • 16e Geoffroy P, Ballet M.-P, Finck S, Marchioni E, Miesch M. Tetrahedron 2010; 66: 7012
  • 17 Klein A, Miesch M. Synthesis 2006; 2613
  • 18 Heinrich CF, Miesch M, Miesch L. Org. Biomol. Chem. 2015; 13: 2153
  • 19 Wang Y, Jaunet A, Geoffroy P, Miesch M. Org. Lett. 2013; 15: 6198
    • 20a Miesch L, Rietsch V, Welsch T, Miesch M. Tetrahedron Lett. 2008; 49: 5053
    • 20b Miesch L, Welsch T, Rietsch V, Miesch M. Chem. Eur. J. 2009; 15: 4394
    • 20c Miesch M, Welsch T, Rietsch V, Miesch L. Strategies Tactics Org. Synth. 2013; 9: 203
  • 21 Bocknack BM, Wang L.-C, Krische MJ. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5421
    • 22a Deschamp J, Riant O. Org. Lett. 2009; 11: 1217
    • 22b Deschamp J, Hermant T, Riant O. Tetrahedron 2012; 68: 3457
  • 23 Li N, Ou J, Miesch M, Chiu P. Org. Biomol. Chem. 2011; 9: 6143
    • 24a Ou J, Wong W.-T, Chiu P. Tetrahedron 2012; 68: 3450
    • 24b Ou J, Wong W.-T, Chiu P. Org. Biomol. Chem. 2012; 10: 5971
  • 25 Burns AR, Gonzalez JS, Lam HW. Angew. Chem. Int. Ed. 2012; 51: 10827
    • 26a Eder U, Sauer G, Wiechert R. Angew. Chem., Int. Ed. Engl. 1971; 10: 496
    • 26b Hajos ZG, Parrish DR. J. Org. Chem. 1974; 39: 1615
  • 27 Davies SG, Russell AJ, Sheppard RL, Smith AD, Thomson JE. Org. Biomol. Chem. 2007; 5: 3190 ; and references cited therein
  • 28 Bradshaw B, Bonjoch J. Synlett 2012; 23: 337
    • 29a Chandler CL, List B. J. Am. Chem. Soc. 2008; 130: 6737
    • 29b See also: Diaz J, Goodman JM. Tetrahedron 2010; 66: 8021
    • 30a Ema T, Oue Y, Akihara K, Miyazaki Y, Sakai T. Org. Lett. 2009; 11: 4866
    • 30b Ema T, Akihara K, Obayashi R, Sakai T. Adv. Synth. Catal. 2012; 354: 3283
    • 30c See also: Lathrop SP, Rovis T. J. Am. Chem. Soc. 2009; 131: 13628