RSS-Feed abonnieren
DOI: 10.1055/a-2557-5089
Enantioselective Zinc-Catalyzed [3+2] Azomethine Ylide Cycloaddition: Developing Planar Chiral [2.2]Paracyclophane-Imidazoline N,O-Ligands
S.V.K. thanks the Irish Research Council (IRC) for the award of a Postdoctoral Scholarship (GOIPD/2019/918) and the UCD School of Chemistry for the award of a Teaching Fellowship.

Abstract
Asymmetric catalysis constitutes a key strategy for the enantioselective synthesis of natural products and bioactive compounds. Chiral ligands are crucial for achieving the required reactivity and enantioselectivity in asymmetric catalytic reactions. Consequently, the rational design of chiral ligands is central to the development of new asymmetric transition-metal-catalyzed reactions. Our group has been actively engaged for many years in the development of chiral ligands for a wide range of asymmetric transformations. This Account presents our recent efforts in the design of chiral ligands specifically for the asymmetric [3+2] azomethine ylide cycloaddition, an important transformation for the asymmetric synthesis of pyrrolidines. We detail their application in Zn-catalyzed [3+2] cycloadditions, discuss the underlying transition states responsible for the observed selectivity, and highlight synthetic applications of this important reaction.
1 Introduction
2 Metal-Catalyzed Azomethine Ylide Cycloaddition
3 Ligand Design: UCD-Imphanol Ligands
4 Application of UCD-Imphanol Ligands in Zn(II)-Catalyzed Azomethine Ylide [3+2] Cycloaddition
5 Synthetic Applications
6 Conclusions
Key words
asymmetric catalysis - chiral ligand design - planar chiral ligands - paracyclophanes - azomethine ylides - [3+2] cycloadditionPublikationsverlauf
Eingereicht: 09. Februar 2025
Angenommen nach Revision: 12. März 2025
Accepted Manuscript online:
12. März 2025
Artikel online veröffentlicht:
24. April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 McVicker RU, O’Boyle NM. J. Med. Chem. 2024; 67: 2305 ; and references cited therein
- 2a Akiyama T, Ojima I. Catalytic Asymmetric Synthesis, 2nd ed. Wiley; New York: 2004
- 2b Diéguez M. Chiral Ligands: Evolution of Ligand Libraries for Asymmetric Catalysis. CRC Press; Boca Raton: 2021
- 3a Guiry PJ, Saunders CP. Adv. Synth. Catal. 2004; 346: 497
- 3b Carroll MP, Guiry PJ. Chem. Soc. Rev. 2014; 43: 819
- 3c Rokade BV, Guiry PJ. ACS Catal. 2018; 8: 624
- 4 McCarthy M, Goddard R, Guiry PJ. Tetrahedron: Asymmetry 1999; 10: 2797
- 5a Fekner T, Müller-Bunz H, Guiry PJ. Org. Lett. 2006; 8: 5109
-
5b
Fekner T,
Müller-Bunz H,
Guiry PJ.
Eur. J. Org. Chem. 2008; 5055
- 5c Maxwell A, Franc C, Pouchain L, Müller-Bunz H, Guiry PJ. Org. Biomol. Chem. 2008; 6: 3848
- 6 Rokade B, Guiry PJ. ACS Catal. 2017; 7: 2334
- 7 Li X, Brennan TB, Kingston C, Ortin Y, Guiry PJ. Molecules 2022; 27: 6078
- 8a McManus HA, Guiry PJ. J. Org. Chem. 2002; 67: 8566
- 8b Coeffard V, Aylward M, Guiry PJ. Angew. Chem. Int. Ed. 2009; 48: 9152
- 9a O’Reilly S, Aylward M, Keogh-Hansen C, Fitzpatrick B, McManus HA, Müller-Bunz H, Guiry PJ. J. Org. Chem. 2015; 80: 10177
-
9b
Despotopoulou C,
McKeon SC,
Connon R,
Coeffard V,
Müller-Bunz H,
Guiry PJ.
Eur. J. Org. Chem. 2017; 6734
- 10a Ahern T, Müller-Bunz H, Guiry PJ. J. Org. Chem. 2006; 71: 7596
- 10b Nottingham C, Benson R, Müller-Bunz H, Guiry PJ. J. Org. Chem. 2015; 80: 10163
- 10c Kumar SV, Guiry PJ. Angew. Chem. Int. Ed. 2022; 61: e202205516
- 10d Kumar SV, Olusegun J, Guiry PJ. Org. Biomol. Chem. 2024; 22: 7148
- 10e Benson A, Cunningham L, Guiry PJ. Eur. J. Org. Chem. 2024; 27: e202300951
- 10f Kumar SV, Guiry PJ. Chem. Eur. J. 2024; 30: e202403345
- 11a Nájera C, Sansano JM. Angew. Chem. Int. Ed. 2005; 44: 6272
- 11b Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
- 11c Pellissier H. Tetrahedron 2007; 63: 3235
- 11d Adrio J, Carretero JC. Chem. Commun. 2019; 55: 11979
- 11e Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
- 11f Adrio J, Carretero JC. Chem. Commun. 2011; 47: 6784
- 11g Adrio J, Carretero JC. Chem. Commun. 2014; 50: 12434
- 11h Kumar SV, Guiry PJ. Chem. Eur. J. 2023; 29: e202300296
-
12a
Sustmann R.
Tetrahedron Lett. 1971; 2717
- 12b Gothelf KV. In Cycloaddition Reactions in Organic Synthesis . Kobayashi S, Jørgensen KA. Wiley-VCH; Weinheim: 2001. Chap. 6, 211
-
13
Tatsukawa A,
Kawatake K,
Kanemasa S,
Rudziński JM.
J. Chem. Soc., Perkin Trans. 2 1994; 2525
- 14 Allway P, Grigg R. Tetrahedron Lett. 1991; 32: 5817
- 15a Gothelf AS, Gothelf KV, Hazell RG, Jørgensen KA. Angew. Chem. Int. Ed. 2002; 41: 4236
- 15b Longmire JM, Wang B, Zhang X. J. Am. Chem. Soc. 2002; 124: 13400
- 15c Oderaotoshi Y, Cheng W, Fujitomi S, Kasano Y, Minakata S, Komatsu M. Org. Lett. 2003; 5: 5043
- 15d Dogan O, Koyuncu H, Garner P, Bulut A, Youngs WJ, Panzner M. Org. Lett. 2006; 8: 4687
- 15e Saito S, Tsubogo T, Kobayashi S. J. Am. Chem. Soc. 2007; 129: 5364
- 15f Shi J.-W, Zhao M.-X, Lei Z.-Y, Shi M. J. Org. Chem. 2008; 73: 305
- 15g Martín-Rodríguez M, Nájera C, Sansano JM, Wu F.-L. Tetrahedron: Asymmetry 2010; 21: 1184
- 15h Wu H, Wang B, Liu H, Wang L. Tetrahedron 2011; 67: 1210
- 16a Gibson SE, Knight JD. Org. Biomol. Chem. 2003; 1: 1256
- 16b Rozenberg V, Sergeeva E, Hopf H. In Modern Cyclophane Chemistry . Gleiter R, Hopf H. Wiley-VCH; Weinheim: 2004: 435
- 16c Hopf H. Angew. Chem. Int. Ed. 2008; 47: 9808
-
16d
Elacqua E,
MacGillivray LR.
Eur. J. Org. Chem. 2010; 6883
-
16e
Paradies J.
Synthesis 2011; 3749
- 16f Hassan Z, Spuling E, Knoll DM, Lahann J, Bräse S. Chem. Soc. Rev. 2018; 47: 6947
- 16g Hassan Z, Spuling E, Knoll DM, Bräse S. Angew. Chem. Int. Ed. 2020; 59: 2156
-
17a
Rozenberg V,
Danilova D,
Sergeeva E,
Vorontsov E,
Starikova Z,
Lysenko K,
Belokon’ Y.
Eur. J. Org. Chem. 2000; 3295
- 17b Dahmen S, Bräse S. J. Am. Chem. Soc. 2002; 124: 5940
-
18
Hou X.-L,
Wu X.-W,
Dai L.-X,
Cao B.-X,
Sun J.
Chem. Commun. 2000; 1195
- 19 Whelligan DK, Bolm C. J. Org. Chem. 2006; 71: 4609
- 20a McManus HA, Guiry PJ. Chem. Rev. 2004; 104: 4151
- 20b Hargaden G, Guiry PJ. Chem. Rev. 2009; 109: 2505
- 20c O’Reilly S, Guiry PJ. Synthesis 2014; 46: 722
- 20d Connon R, Roche B, Rokade BV, Guiry PJ. Chem. Rev. 2021; 121: 6373
- 21 Li J, Yu B, Lu Z. Chin. J. Chem. 2021; 39: 488
- 22a Hernández-Toribio J, Arrayás RG, Martín-Matute B, Carretero JC. Org. Lett. 2009; 11: 393
- 22b Zhang C, Yu S.-B, Hu X.-P, Wang D.-Y, Zheng Z. Org. Lett. 2010; 12: 5542
- 22c Oura I, Shimizu K, Ogata K, Fukuzawa S.-i. Org. Lett. 2010; 12: 1752
- 22d Bai X.-F, Xu Z, Xia C.-G, Zheng Z.-J, Xu L.-W. ACS Catal. 2015; 5: 6016
- 22e Caleffi GS, Larrañaga O, Martín-Rodríguez M, Costa PR. R, Nájera C, de Cózar A, Cossío FP, Sansano JM. J. Org. Chem. 2019; 84: 10593
- 22f Cayuelas A, Larrañaga O, Selva V, Nájera C, Akiyama T, Sansano JM, de Cózar A, Miranda JI, Cossío FP. Chem. Eur. J. 2018; 24: 8092
-
22g
Nájera C,
de Gracia Retamosa M,
Martín-Rodríguez M,
Sansano JM,
de Cózar A,
Cossío FP.
Eur. J. Org. Chem. 2009; 5622
- 22h Li J.-Y, Kim HY, Oh K. Adv. Synth. Catal. 2016; 358: 984
- 22i Martín-Rodríguez M, Nájera C, Sansano JM, de Cózar A, Cossío FP. Chem. Eur. J. 2011; 17: 14224