Synthesis 2024; 56(01): 71-86
DOI: 10.1055/a-2044-4571
special topic
Advances in Skeletal Editing and Rearrangement Reactions

Dealkenylative Functionalizations: Conversion of Alkene C(sp3)–C(sp2) Bonds into C(sp3)–X Bonds via Redox-Based Radical Processes

Brady W. Dehnert
,
Jeremy H. Dworkin
,
Ohyun Kwon
We acknowledge the National Institutes of Health (NIH) for funding the ‘Dealkenylative Functionalization’ project (grants R01 GM141327 and R01 GM141327-02S1).


Abstract

This review highlights the history and recent advances in dealkenylative functionalization. Through this deconstructive strategy, radical functionalizations occur under mild, robust conditions. The reactions described proceed with high efficiency, good stereoselectivity, tolerate many functional groups, and are completed within a matter of minutes. By cleaving the C(sp3)–C(sp2) bond of terpenes and terpenoid-derived precursors, rapid diversification of natural products is possible.

1 Introduction

2 Mechanism

3 History

4 Motivation to Pursue Dealkenylation

5 Dealkenylation in the Present

6 Conclusion



Publikationsverlauf

Eingereicht: 04. Januar 2023

Angenommen nach Revision: 28. Februar 2023

Accepted Manuscript online:
28. Februar 2023

Artikel online veröffentlicht:
12. April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ertl P, Schuhmann T. J. Nat. Prod. 2019; 82: 1258
  • 2 Murai S, Sonoda N, Tsutsumi S. Bull. Chem. Soc. Jpn. 1964; 37: 1187
  • 3 Schreiber SL. J. Am. Chem. Soc. 1980; 102: 6163
  • 4 Cardinale G, Grimmelikhuysen JC, Laan JA. M, van Lier FP, van der Steen D, Ward JP. Tetrahedron 1989; 18: 5971
  • 5 Rosales A, Muñoz-Bascón J, López-Sánchez C, Álvarez-Corral M, Muñoz-Dorado M, Rodríguez-García I, Oltra JE. J. Org. Chem. 2012; 77: 4171
  • 6 Bao J, Tian H, Yang P, Deng J, Gui J. Eur J. Org. Chem. 2020; 339
    • 7a Chen S.-C, Zhu Q, Cao Y, Li C, Guo Y, Kong L, Che J, Guo Z, Chen H, Zhang N, Fang X, Lu J.-T, Luo T. J. Am. Chem. Soc. 2021; 143: 14046
    • 7b Chen S.-C, Zhu Q, Chen H, Chen Z, Luo T. Chem. Eur. J. 2023; e202203425
  • 8 Smaligo AJ, Vardhineedi S, Kwon O. ACS Catal. 2018; 8: 5188
  • 9 Smaligo AJ, Swain M, Quintana JC, Tan MF, Kim DA, Kwon O. Science 2019; 364: 681
  • 10 Smaligo AJ, Kwon O. Org. Lett. 2019; 21: 8592
  • 11 Smaligo AJ, Wu J, Burton RN, Hacker AS, Shaikh AC, Quintana JC, Wang R, Xie C, Kwon O. Angew. Chem. Int. Ed. 2020; 59: 1211
  • 12 Swain M, Sadykhov G, Wang R, Kwon O. Angew. Chem. Int. Ed. 2020; 59: 17565
  • 13 Swain M, Bunnell T, Kim J, Kwon O. J. Am. Chem. Soc. 2022; 144: 14828
    • 14a C–C Bond Activation . Dong G. Springer Verlag; Berlin/Heidelberg: 2014
    • 14b Hoang TT, Dudley GB, Williams LJ. Fragmentation Reactions . In Comprehensive Organic Synthesis II, 2nd ed. Knochel P. Elsevier; Amsterdam: 2014: 842-860
    • 14c Cleavage of Carbon–Carbon Single Bonds by Transition Metals. Murakami M, Chatani N. Wiley-VCH; Weinheim: 2016
    • 14d Special issue on Carbon–Carbon Bond Cleavage in Stereoselective Synthesis: Marek I. Ed. Chem. Rev.. 2021. 121. 1-561

    • For reviews on radical-based C–C cleavage reactions, see:
    • 14e Wu X, Zhu C. Chin. J. Chem. 2019; 37: 171
    • 14f Sivaguru P, Wang Z, Zanoni G, Bi X. Chem. Soc. Rev. 2019; 48: 2615
    • 14g Morcillo SP. Angew. Chem. Int. Ed. 2019; 58: 14040
  • 15 Kim D, Zhu Y, Harada S, Aguilar I, Cuomo AE, Wang M, Newhouse T. J. Am. Chem. Soc. 2023; 145: 4394
  • 16 Ji J, Chen J, Qin S, Li W, Zhao J, Li J, Song H, Liu X.-Y, Qin Y. J. Am. Chem. Soc. 2023; 145: 3903
  • 17 Brodie BC. Phil. Trans. R. Soc. 1862; 152: 837
  • 18 Brodie BC. J. Chem. Soc. 1864; 17: 266
  • 19 Parnell J. J. Chem. Soc. 1868; 21: 356
  • 20 Fenton HJ. H. J. Chem. Soc., Trans. 1894; 65: 899
  • 21 Haber F, Weiss J. Naturwissenschaften 1932; 20: 948
  • 22 George P, Walsh AD. Trans. Faraday Soc. 1946; 42: 94
  • 23 Wieland H, Maier J. Ber. Dtsch. Chem. Ges. (A and B Series). 1931; 64: 1205

    • For historical examples of radical decarboxylation from acyl peroxides, see :
    • 24a Gelissen H, Hermans PH. Ber. Dtsch. Chem. Ges. (A and B Series) 1925; 58: 476
    • 24b Overhoff J, Tilman G. Rec. Trav. Chim. Pays-Bas 1929; 48: 993
    • 24c Hey DH. J. Chem. Soc. (Resumed) 1934; 1966
    • 24d Hey DH, Waters WA. Chem. Rev. 1937; 21: 169
    • 24e Walker OJ, Wild GL. E. J. Chem. Soc. (Resumed) 1937; 1132
    • 24f Kharasch MS, Kane SS, Brown HC. J. Am. Chem. Soc. 1941; 63: 526
    • 24g Kharasch MS, Rowe JL, Urry WH. J. Org. Chem. 1951; 16: 905
    • 24h Kharasch MS, Kuderna J, Nudenberg W. J. Org. Chem. 1954; 19: 1283
    • 24i Greene FD. J. Am. Chem. Soc. 1955; 77: 4869
    • 24j Greene FD, Stein HP, Chu CC, Vane FM. J. Am. Chem. Soc. 1964; 86: 2080

      For recent examples of radical decarboxylation reactions from peroxides, see:
    • 25a Yu F, Wang T, Zhou H, Li Y, Zhang X, Bao H. Org. Lett. 2017; 19: 6538
    • 25b Cui Z, Du D.-M. J. Org. Chem. 2018; 83: 5149
    • 25c Deng W, Feng W, Li Y, Bao H. Org. Lett. 2018; 20: 4245
    • 25d Ge L, Wujun J, Zhou H, Chen S, Ye C, Yu F, Qian B, Li Y, Bao H. Chem. Asian J. 2018; 13: 2522
    • 25e Kawamura S, Henderson C, Aoki Y, Sekine D, Kobayashi S, Sodeoka M. Chem. Commun. 2018; 54: 11276
    • 25f Ye C, Qian B, Li Y, Su M, Li D, Bao H. Org. Lett. 2018; 20: 3202
    • 25g Ye C, Li Y, Zhu X, Hu S, Yuan D, Bao H. Chem. Sci. 2019; 10: 3632
    • 25h Zhu X, Deng W, Chiou M.-F, Ye C, Jian W, Zeng Y, Jiao Y, Ge L, Li Y, Zhang X, Bao H. J. Am. Chem. Soc. 2019; 141: 548
    • 25i Wei R, Xiong H, Ye C, Bao H. Org. Lett. 2020; 22: 3195
    • 25j Zhu X, Su M, Zhang Q, Li Y, Bao H. Org. Lett. 2020; 22: 620
    • 25k Aoki Y, Kawamura S, Sodeoka M. Org. Synth. 2021; 98: 84
    • 25l Tagami T, Aoki Y, Kawamura S, Sodeoka M. Org. Biomol. Chem. 2021; 19: 9148
    • 25m Tang Z.-L, Ouyang X.-H, Song R.-J, Li J.-H. Org. Lett. 2021; 23: 1000
    • 25n Wang K, Li Y, Li X, Li D, Bao H. Org. Lett. 2021; 23: 8847
    • 25o Zhu X, Jian W, Huang M, Li D, Li Y, Zhang X, Bao H. Nat. Commun. 2021; 12: 6670
  • 26 Hartmann M, Seiberth M. Helv. Chim. Acta 1932; 15: 1390
  • 27 Wieland H, Chromeztka F. Ber. Dtsch. Chem. Ges. (A and B Series) 1930; 63: 1028
  • 28 See the series titled Studies in Organic Peroxides. First publication: Milas NA, Harris SA. J. Am. Chem. Soc. 1933; 55: 349
  • 29 Milas NA, Surgenor DM. J. Am. Chem. Soc. 1946; 68: 205
  • 30 See the series titled Decompositions of Di-t-Alkyl Peroxides. First publication: Raley JH, Rust FF, Vaughan WE. J. Am. Chem. Soc. 1948; 70: 88
  • 31 See the series titled Reactions of Organic Peroxides. First publication: Hawkins EG. E. J. Chem. Soc. 1949; 2076
  • 32 Hawkins EG. E, Young DP. J. Chem. Soc. 1950; 2804
  • 33 See the series titled The Chemistry of Hydroperoxides. First publication: Kharasch MS, Fono A, Nudenberg W. J. Org. Chem. 1950; 15: 748
  • 34 Kharasch MS, Fono A. J. Org. Chem. 1959; 24: 606
  • 35 Kharasch MS, Fono A, Nudenberg W. J. Org. Chem. 1950; 15: 763
  • 36 Hawkins EG. E. J. Chem. Soc. 1955; 3463
  • 37 Youngman EA, Rust FF, Coppinger GF, De La Mare HE. J. Org. Chem. 1963; 28: 144
  • 38 Chiusoli GP, Minisci F. Gazz. Chim. Ital. 1958; 88: 261
  • 39 Minisci F, Portolani A. Gazz. Chim. Ital. 1959; 89: 1941
  • 40 Minisci F. Gazz. Chim. Ital. 1959; 89: 2428
  • 41 Minisci F. Gazz. Chim. Ital. 1959; 89: 1910
  • 42 Minisci F, Portolani A. Gazz. Chim. Ital. 1959; 89: 1922
  • 43 Minisci F, Belvedere G. Gazz. Chim. Ital. 1960; 90: 1299
  • 44 Minisci F. Tetrahedron 1970; 26: 4083
  • 45 Kumamoto J, De La Mare HE, Rust FF. J. Am. Chem. Soc. 1960; 82: 1935
  • 46 De La Mare HE, Kochi JK, Rust FF. J. Am. Chem. Soc. 1961; 83: 2013
  • 47 De La Mare HE, Kochi JK, Rust FF. J. Am. Chem. Soc. 1963; 85: 1437
  • 48 Kochi JK, Mains HE. J. Org. Chem. 1965; 6: 1862
  • 49 Dworkin JH, Dehnert BW, Kwon O. Trends Chem. 2023; 5: 174
  • 50 Brodie BC. Justus Liebigs Ann. Chem. 1858; 108: 79
  • 51 Milas NA, Surgenor DM. J. Am. Chem. Soc. 1946; 68: 642
  • 52 Wolffenstein R. Ber. Dtsch. Chem. Ges. 1895; 28: 2265
  • 53 Bach MA. C. R. Hebd. Seances Acad. Sci. 1897; 124: 951
  • 54 Engler C, Wild W. Ber. Dtsch. Chem. Ges. 1897; 30: 1669
  • 55 Milas NA, Harris SA. J. Am. Chem. Soc. 1938; 60: 2434
  • 56 Milas NA, Panagiotakos PC. J. Am. Chem. Soc. 1940; 62: 1878
  • 57 Windaus A, Brunken J. Liebigs Ann. Chem. 1928; 460: 225
  • 58 Bartlett PD, Schaap AP. J. Am. Chem. Soc. 1970; 92: 3223
  • 59 Schenck GO, Eggert H, Denk W. Justus Liebigs Ann. Chem. 1953; 584: 177
  • 60 Schönbein CF. Ber. Verh. Nat. Ges. Basel 1838; 4: 58
  • 61 Criegee R. Justus Liebigs Ann. Chem. 1948; 560: 127
  • 62 Criegee R, Dietrich H. Justus Liebigs Ann. Chem. 1948; 560: 135
  • 63 Criegee R, Schnorrenberg W. Justus Liebigs Ann. Chem. 1948; 560: 141
  • 64 Criegee R, Wenner G. Justus Liebigs Ann. Chem. 1949; 564: 9
  • 65 Isayama S, Mukaiyama T. Chem. Lett. 1989; 18: 573
  • 66 Liu W, Li Y, Liu K, Li Z. J. Am. Chem. Soc. 2011; 133: 10756

    • For selected examples of difunctionalization featuring peroxidation, see:
    • 67a Cheng J.-K, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42
    • 67b Shi E, Liu J, Liu C, Shao Y, Wang H, Lv Y, Ji M, Bao X, Wan X. J. Org. Chem. 2016; 81: 5878
    • 67c Cheng J.-K, Shen L, Wu L.-H, Hu X.-H, Loh T.-P. Chem. Commun. 2017; 53: 12830
    • 67d Lan Y, Chang X.-H, Fan P, Shan C.-C, Liu Z.-B, Loh T.-P. Xu Y.-H. 2017; 7: 7120
    • 67e Zhang H.-Y, Ge C, Zhao J, Zhang Y. Org. Lett. 2017; 19: 5260
    • 67f Zhao L, Wang Y, Ma Z, Wang Y. Inorg. Chem. 2017; 56: 8166
    • 67g Chen Y, Ma Y, Li L, Jiang H, Li Z. Org. Lett. 2019; 21: 1480
    • 67h Shen J, Xiao B, Hou Y, Wang X, Li G.-Z, Chen J.-C, Wang W.-L, Cheng J.-B, Yang B, Yang S.-D. Adv. Synth. Catal. 2019; 361: 5198
    • 67i Wu C.-S, Li R, Wang Q.-Q, Yang L. Green Chem. 2019; 21: 269
    • 67j Chen Y, Ma Y, Li L, Cui M, Li Z. Org. Chem. Front. 2020; 7: 1837
    • 67k Wang L, Ma Y, Jiang Y, Lv L, Li Z. Chem. Commun. 2021; 57: 7846
    • 67l Luo Y, Xu B, Lv L, Li Z. Org. Lett. 2022; 24: 2425
  • 68 Wang X.-T, Han W.-B, Chen H.-J, Zha Q, Wu Y. J. Org. Chem. 2020; 85: 10007
  • 69 Bailey PS, Bath SS. J. Am. Chem. Soc. 1957; 79: 3120
  • 70 Uskoković M, Gut M, Dorfman RI. J. Am. Chem. Soc. 1960; 82: 3668
  • 71 Koechlin B, Reichstein T. Helv. Chim. Acta 1944; 27: 549

    • For examples on the application of Schreiber’s protocol including in total synthesis, see:
    • 72a Jansen BJ. M, Kreuger JA, De Groot A. Tetrahedron 1989; 45: 1447
    • 72b Meulemans TM, Stork GA, Macaev FZ, Jansen BJ. M, de Groot A. J. Org. Chem. 1999; 64: 9178
    • 72c Jiang C.-H, Bhattacharyya A, Sha C.-K. Org. Lett. 2007; 9: 3241
    • 72d Velthuisen EJ, Danishefsky SJ. J. Am. Chem. Soc. 2007; 129: 10640
    • 72e Beaulieu M.-A, Sabot C, Achache N, Guérard KC, Canesi S. Chem. Eur. J. 2010; 16: 11224
    • 72f Gui J, Wang D, Tian W. Angew. Chem. Int. Ed. 2011; 50: 7093
    • 72g Huang D, Schuppe AW, Liang MZ, Newhouse TR. Org. Biomol. Chem. 2016; 14: 6197
    • 72h Schuppe AW, Newhouse TR. J. Am. Chem. Soc. 2017; 139: 631
    • 72i Liffert R, Linden A, Gademann K. J. Am. Chem. Soc. 2017; 139: 16096
    • 72j Manoni F, Rumo C, Li L, Harran PG. J. Am. Chem. Soc. 2018; 140: 1280
  • 73 Henry CE, Xu Q, Fan YC, Martin TJ, Belding L, Dudding T, Kwon O. J. Am. Chem. Soc. 2014; 136: 11890
  • 74 Srikrishna A, Kumar PR, Gharpure SJ. Tetrahedron Lett. 2001; 42: 3929
  • 75 Srikrishna A, Ravi G. Tetrahedron 2008; 64: 2565
  • 76 Srikrishna A, Reddy TJ. Tetrahedron 1998; 54: 11517
  • 77 Pogrebnoi S, Sarabèr FC. E, Jansen BJ. M, de Groot A. Tetrahedron 2006; 62: 1743
  • 78 Denmark SE, Cresswell AJ. J. Org. Chem. 2013; 78: 12593
    • 79a Bowry VW, Ingold KU. J. Am. Chem. Soc. 1992; 114: 4992
    • 79b Chateauneuf J, Lusztyk J, Ingold KU. J. Org. Chem. 1988; 53: 1629
    • 79c Beckwith AJ, Bowry VW, Ingold KU. J. Am. Chem. Soc. 1992; 114: 4983
  • 80 Wu Z, Pratt DA. J. Am. Chem. Soc. 2020; 142: 10284
    • 81a Huston P, Espenson JH, Bakac A. Inorg. Chem. 1992; 31: 720
    • 81b Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
  • 82 Wu D, Mei H, Tan P, Lu W, Zhu J, Wang W, Huan J, Li J. Tetrahedron Lett. 2015; 56: 4383
  • 83 Jang J, Sin KS, Park H. Arch. Pharmacal Res. 2001; 24: 503
    • 84a Fischer H. Substituent Effects in Radical Chemistry . Viehe HG, Janousek Z, Merenyi R. Reidel; Dordrecht: 1986: 123-142
    • 84b Wong MW, Radom L. J. Phys. Chem. 1995; 99: 8582
    • 84c Zytowski T, Fischer H. J. Am. Chem. Soc. 1996; 118: 437
    • 84d Rubin H, Fischer H. Helv. Chim. Acta 1996; 79: 1670
    • 84e Fischer H, Radom L. Angew. Chem. Int. Ed. 2001; 40: 1340
    • 84f Newcomb M. Radical Kinetics and Clocks, In Encyclopedia of Radicals in Chemistry, Biology and Materials . Chatgilialoglu C, Studer A. John Wiley & Sons; Chichester: 2012: 107-124
    • 84g Wille U. Chem. Rev. 2013; 113: 813