Synlett 2022; 33(18): 1788-1812
DOI: 10.1055/a-1790-3230
account
Development and Applications of Novel Ligands/Catalysts and Mechanistic Studies on Catalysis

Catalytic Kinetic Resolution and Desymmetrization of Amines

Wei Liu
,
Donglei Wang
,
Dekun Zhang
,
Xiaoyu Yang
We gratefully acknowledge the National Natural Science Foundation of China (NSFC, Grant No. 22171186) and ShanghaiTech University startup funding for financial support.


Abstract

Optically active amines represent critically important subunits in bioactive natural products and pharmaceuticals, as well as key scaffolds in chiral catalysts and ligands. Kinetic resolution of racemic amines and enantioselective desymmetrization of prochiral amines have proved to be efficient methods to access enantioenriched amines, especially when the racemic or prochiral amines were easy to prepare while the chiral ones are difficult to be accessed directly. In this Account, we systematically summarized the development of kinetic resolution and desymmetrization of amines through nonenzymatic asymmetric catalytic approaches in the last two decades.

1 Introduction

2 Kinetic Resolution of Amines

2.1 Kinetic Resolution of Amines via Asymmetric Transformations of the Amino Group

2.1.1 Asymmetric N-Acylations

2.1.2 Asymmetric N-Alkylation

2.1.3 Asymmetric N-Arylation

2.1.4 Other Asymmetric N-Functionalizations

2.1.5 Asymmetric Dehydrogenation of Amines

2.1.6 Selective C–N Bond Cleavage of Amines

2.2 Kinetic Resolution of Amines via Asymmetric Transformations without Amino Group Participating

3 Enantioselective Desymmetrization of Amines

3.1 Desymmetrization of Diamines

3.2 Desymmetrization of Prochiral Monoamines

4 Conclusion and Outlooks



Publication History

Received: 18 January 2022

Accepted after revision: 07 March 2022

Accepted Manuscript online:
07 March 2022

Article published online:
13 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Top 200 Small Molecule Drugs by Sales in 2020, a poster made by Jon T. Njardarson’s group (accessed: April 4, 2022): https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster
    • 3a Nugent TC. Chiral Amine Synthesis: Methods, Developments and Applications. Wiley-VCH; Weinheim: 2010
    • 3b Yin Q, Shi Y, Wang J, Zhang X. Chem. Soc. Rev. 2020; 49: 6141
    • 4a Xie J.-H, Zhu S.-F, Zhou Q.-L. Chem. Rev. 2011; 111: 1713
    • 4b Wang C, Xiao J. Asymmetric Reductive Amination. In Stereoselective Formation of Amines . Li W, Zhang X. Springer; Berlin/Heidelberg: 2014: 261
    • 4c Ponra S, Boudet B, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2021; 53: 193
    • 4d Nugent TC, El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
    • 5a Verkade JM. M, van Hemert LJ. C, Quaedflieg PJ. L. M, Rutjes FP. J. T. Chem. Soc. Rev. 2008; 37: 29
    • 5b Friestad GK, Mathies AK. Tetrahedron 2007; 63: 2541
    • 5c Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
    • 6a Michon C, Abadie M.-A, Medina F, Agbossou-Niedercorn F. J. Organomet. Chem. 2017; 847: 13
    • 6b Zhou F, Liao F.-M, Yu J.-S, Zhou J. Synthesis 2014; 46: 2983
    • 6c Greck C, Drouillat B, Thomassigny C. Eur. J. Org. Chem. 2004; 1377
    • 7a Robinson DE. J. E, Bull SD. Tetrahedron: Asymmetry 2003; 14: 1407
    • 7b Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
    • 7c Müller CE, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 6012
    • 7d Pellissier H. Adv. Synth. Catal. 2011; 353: 1613
    • 7e Gurubrahamam R, Cheng Y.-S, Huang W.-Y, Chen K. ChemCatChem 2016; 8: 86
    • 7f Petersen KS. Asian J. Org. Chem. 2016; 5: 308
    • 7g Chen S, Shi Y.-H, Wang M. Chem. Asian J. 2018; 13: 2184
    • 7h Wang Z, Pan D, Li T, Jin Z. Chem. Asian J. 2018; 13: 2149
    • 7i Cook GR. Curr. Org. Chem. 2000; 4: 869
    • 7j Keith JM, Larrow JF, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 5
  • 8 Kagan HB, Fiaud JC. Kinetic Resolution . In Topics in Stereochemistry, Vol. 18. Eliel EL, Wilen SH. Wiley; New York: 1985: 249
    • 9a Pellissier H. Tetrahedron 2016; 72: 3133
    • 9b Li P, Hu X, Dong X.-Q, Zhang X. Molecules 2016; 21: 1327
    • 9c Pellissier H. Adv. Synth. Catal. 2011; 353: 659

      For selected examples of DKR of azlactones, see:
    • 10a Xie M.-S, Huang B, Li N, Tian Y, Wu X.-X, Deng Y, Qu G.-R, Guo H.-M. J. Am. Chem. Soc. 2020; 142: 19226
    • 10b Mandai H, Hongo K, Fujiwara T, Fujii K, Mitsudo K, Suga S. Org. Lett. 2018; 20: 4811
    • 10c Yu K, Liu X, Lin X, Lin L, Feng X. Chem. Commun. 2015; 51: 14897
    • 10d Metrano AJ, Miller SJ. J. Org. Chem. 2014; 79: 1542
    • 10e Yang X, Lu G, Birman VB. Org. Lett. 2010; 12: 892
    • 10f Lee JW, Ryu TH, Oh JS, Bae HY, Jang HB, Song CE. Chem. Commun. 2009; 7224
    • 10g Berkessel A, Mukherjee S, Cleemann F, Müller TN, Lex J. Chem. Commun. 2005; 1898
    • 10h Berkessel A, Cleemann F, Mukherjee S, Müller TN, Lex J. Angew. Chem. Int. Ed. 2005; 44: 807
    • 10i Hang J, Li H, Deng L. Org. Lett. 2002; 4: 3321

      For selected examples of DKR of α-amino ketones, see:
    • 11a Gediya SK, Clarkson GJ, Wills M. J. Org. Chem. 2020; 85: 11309
    • 11b Zhang Y.-M, Zhang Q.-Y, Wang D.-C, Xie M.-S, Qu G.-R, Guo H.-M. Org. Lett. 2019; 21: 2998
    • 11c Zheng L.-S, Férard C, Phansavath P, Ratovelomanana-Vidal V. Chem. Commun. 2018; 54: 283
    • 11d Wu W, You C, Yin C, Liu Y, Dong X.-Q, Zhang X. Org. Lett. 2017; 19: 2548
    • 11e Sun G, Zhou Z, Luo Z, Wang H, Chen L, Xu Y, Li S, Jian W, Zeng J, Hu B, Han X, Lin Y, Wang Z. Org. Lett. 2017; 19: 4339
    • 11f Vyas VK, Bhanage BM. Org. Lett. 2016; 18: 6436
    • 11g Goodman CG, Do DT, Johnson JS. Org. Lett. 2013; 15: 2446
    • 11h Seashore-Ludlow B, Saint-Dizier F, Somfai P. Org. Lett. 2012; 14: 6334
    • 11i Seashore-Ludlow B, Villo P, Häcker C, Somfai P. Org. Lett. 2010; 12: 5274
    • 13a Krasnov VP, Gruzdev DA, Levit GL. Eur. J. Org. Chem. 2012; 1471
    • 13b Kreituss I, Bode JW. Acc. Chem. Res. 2016; 49: 2807
    • 13c Tang L, Li XW, Xie F, Zhang WB. Chin. J. Org. Chem. 2020; 40: 575
    • 14a Borissov A, Davies TQ, Ellis SR, Fleming TA, Richardson MS. W, Dixon DJ. Chem. Soc. Rev. 2016; 45: 5474
    • 14b Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
    • 14c Suzuki T. Tetrahedron Lett. 2017; 58: 4731
    • 14d Petersen KS. Tetrahedron Lett. 2015; 56: 6523
  • 16 Qian D, Chen M, Bissember AC, Sun J. Angew. Chem. Int. Ed. 2018; 57: 3763
  • 17 Arai S, Bellemin-Laponnaz S, Fu GC. Angew. Chem. Int. Ed. 2001; 40: 234
  • 18 Arp FO, Fu GC. J. Am. Chem. Soc. 2006; 128: 14264
  • 19 Birman VB, Jiang H, Li X, Guo L, Uffman EW. J. Am. Chem. Soc. 2006; 128: 6536
  • 20 Yang X, Bumbu VD, Liu P, Li X, Jiang H, Uffman EW, Guo L, Zhang W, Jiang X, Houk KN, Birman VB. J. Am. Chem. Soc. 2012; 134: 17605
  • 21 Bumbu VD, Yang X, Birman VB. Org. Lett. 2013; 15: 2790
  • 22 De CK, Klauber EG, Seidel D. J. Am. Chem. Soc. 2009; 131: 17060
  • 23 Mittal N, Sun DX, Seidel D. Org. Lett. 2012; 14: 3084
  • 24 Klauber EG, De CK, Shah TK, Seidel D. J. Am. Chem. Soc. 2010; 132: 13624
  • 25 Klauber EG, Mittal N, Shah TK, Seidel D. Org. Lett. 2011; 13: 2464
  • 26 Min C, Mittal N, De CK, Seidel D. Chem. Commun. 2012; 48: 10853
  • 27 Fowler BS, Mikochik PJ, Miller SJ. J. Am. Chem. Soc. 2010; 132: 2870
  • 28 Binanzer M, Hsieh S.-Y, Bode JW. J. Am. Chem. Soc. 2011; 133: 19698
  • 29 Hsieh S.-Y, Binanzer M, Kreituss I, Bode JW. Chem. Commun. 2012; 48: 8892
  • 30 Wanner B, Kreituss I, Gutierrez O, Kozlowski MC, Bode JW. J. Am. Chem. Soc. 2015; 137: 11491
    • 31a Kreituss I, Chen K.-Y, Eitel SH, Adam J.-M, Wuitschik G, Fettes A, Bode JW. Angew. Chem. Int. Ed. 2016; 55: 1553
    • 31b Kreituss I, Murakami Y, Binanzer M, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 10660
    • 31c Kreituss I, Bode JW. Nat. Chem. 2017; 9: 446
  • 32 Murray JI, Flodén NJ, Bauer A, Fessner ND, Dunklemann DL, Bob-Egbe O, Rzepa HS, Bürgi T, Richardson J, Spivey AC. Angew. Chem. Int. Ed. 2017; 56: 5760
  • 33 Ma C, Sheng F.-T, Wang H.-Q, Deng S, Zhang Y.-C, Jiao Y, Tan W, Shi F. J. Am. Chem. Soc. 2020; 142: 15686
  • 34 Liu S.-J, Chen Z.-H, Chen J.-Y, Ni S.-F, Zhang Y.-C, Shi F. Angew. Chem. Int. Ed. 2022; 61: e202112226
  • 35 Hou XL, Zheng BH. Org. Lett. 2009; 11: 1789
    • 36a Shirakawa S, Wu X, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 14200
    • 36b Shirakawa S, Wu X, Liu S, Maruoka K. Tetrahedron 2016; 72: 5163
  • 37 Cheng D.-J, Yan L, Tian S.-K, Wu M.-Y, Wang L.-X, Fan Z.-L, Zheng S.-C, Liu X.-Y, Tan B. Angew. Chem. Int. Ed. 2014; 53: 3684
  • 38 Lu S, Ng SV. H, Lovato K, Ong J.-Y, Poh SB, Ng XQ, Kürti L, Zhao Y. Nat. Commun. 2019; 10: 3061
  • 39 Lin Y, Hirschi WJ, Kunadia A, Paul A, Ghiviriga I, Abboud KA, Karugu RW, Vetticatt MJ, Hirschi JS, Seidel D. J. Am. Chem. Soc. 2020; 142: 5627
  • 40 Yang W, Long Y, Zhang S, Zeng Y, Cai Q. Org. Lett. 2013; 15: 3598
  • 41 Wang ZC, Xie PP, Xu YJ, Hong X, Shi SL. Angew. Chem. Int. Ed. 2021; 60: 16077
  • 42 Min C, Seidel D. Chem. Eur. J. 2016; 22: 10817
  • 43 Das S, Majumdar N, De CK, Kundu DS, Dohring A, Garczynski A, List B. J. Am. Chem. Soc. 2017; 139: 1357
    • 44a Wang D, Jiang Q, Yang X. Chem. Commun. 2020; 56: 6201
    • 44b Wang D, Liu W, Tang M, Yu N, Yang X. iScience 2019; 22: 195
  • 45 Liu W, Jiang Q, Yang X. Angew. Chem. Int. Ed. 2020; 59: 23598
  • 46 Bhadra S, Yamamoto H. Angew. Chem. Int. Ed. 2016; 55: 13043
  • 47 Wang G, Lu R, He C, Liu L. Nat. Commun. 2021; 12: 2512
    • 48a Pan Y, Jiang Q, Rajkumar S, Zhu C, Xie J, Yu S, Chen Y, He Y.-P, Yang X. Adv. Synth. Catal. 2021; 363: 200
    • 48b Rajkumar S, He S, Yang X. Angew. Chem. Int. Ed. 2019; 58: 10315
  • 49 Jiang Q, Qin T, Yang X. Org. Lett. 2022; 24: 625
  • 50 Saito K, Shibata Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2013; 135: 11740
  • 51 Saito K, Miyashita H, Akiyama T. Chem. Commun. 2015; 51: 16648
  • 52 Saito K, Miyashita H, Ito Y, Yamanaka M, Akiyama T. Org. Lett. 2020; 22: 3128
  • 53 Saito K, Akiyama T. Angew. Chem. Int. Ed. 2016; 55: 3148
  • 54 Lu R, Cao L, Guan H, Liu L. J. Am. Chem. Soc. 2019; 141: 6318
  • 55 Li G.-Q, Li Y, Dai L.-X, You S.-L. Adv. Synth. Catal. 2008; 350: 1258
  • 56 Wu X.-S, Tian S.-K. Chem. Commun. 2012; 48: 898
  • 57 Wang Y, Xu Y.-N, Fang G.-S, Kang H.-J, Gu Y, Tian S.-K. Org. Biomol. Chem. 2015; 13: 5367
  • 58 Minato D, Nagasue Y, Demizu Y, Onomura O. Angew. Chem. Int. Ed. 2008; 47: 9458
  • 59 Minato D, Arimoto H, Nagasue Y, Demizu Y, Onomura O. Tetrahedron 2008; 64: 6675
  • 60 Yang X, Birman VB. Chem. Eur. J. 2011; 17: 11296
  • 61 Lei B.-L, Ding C.-H, Yang X.-F, Wan X.-L, Hou X.-L. J. Am. Chem. Soc. 2009; 131: 18250
  • 62 Lei B.-L, Zhang Q.-S, Yu W.-H, Ding Q.-P, Ding C.-H, Hou X.-L. Org. Lett. 2014; 16: 1944
  • 63 Sibi MP, Kawashima K, Stanley LM. Org. Lett. 2009; 11: 3894
  • 64 Wang M, Huang Z, Xu J, Chi YR. J. Am. Chem. Soc. 2014; 136: 1214
  • 65 Chu L, Xiao K.-J, Yu J.-Q. Science 2014; 346: 451
  • 66 Xiao K.-J, Chu L, Chen G, Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 7796
  • 67 González JM, Cendón B, Mascareñas JL, Gulías M. J. Am. Chem. Soc. 2021; 143: 3747
  • 68 Yang Z, Chen F, He Y, Yang N, Fan Q.-H. Angew. Chem. Int. Ed. 2016; 55: 13863
  • 69 Kong D, Han S, Wang R, Li M, Zi G, Hou G. Chem. Sci. 2017; 8: 4558
  • 70 Cai B, Yang Q, Meng L, Wang JJ. Chin. J. Chem. 2021; 39: 1606
  • 71 He B, Phansavath P, Ratovelomanana-Vidal V. Org. Chem. Front. 2021; 8: 2504
  • 72 Zhu Y, Zhou J, Li J, Xu K, Ye J, Lu Y, Liu D, Zhang W. Org. Chem. Front. 2021; 8: 6609
  • 73 Qiao J, Chang W, Zhao W, Liang Y, Wang S. Org. Lett. 2021; 23: 6664
  • 74 Chen Y, Zhu C, Guo Z, Liu W, Yang X. Angew. Chem. Int. Ed. 2021; 60: 5268
  • 75 Pan Y, Wang D, Chen Y, Zhang D, Liu W, Yang X. ACS Catal. 2021; 11: 8443
  • 76 Guo Z, Xie J, Hu T, Chen Y, Tao H, Yang X. Chem. Commun. 2021; 57: 9394
  • 77 Zhu C, Liu W, Zhao F, Chen Y, Tao H, He Y.-P, Yang X. Org. Lett. 2021; 23: 4104
    • 78a Ríos-Lombardía N, Busto E, García-Urdiales E, Gotor-Fernández V, Gotor V. J. Org. Chem. 2009; 74: 2571
    • 78b Busto E, Gotor-Fernández V, Montejo-Bernardo J, García-Granda S, Gotor V. Org. Lett. 2007; 9: 4203
    • 78c Berkessel A, Ong M.-C, Nachi M, Neudörfl J.-M. ChemCatChem 2010; 2: 1215
    • 78d Luna A, Alfonso I, Gotor V. Org. Lett. 2002; 4: 3627
  • 79 Kitagawa O, Yotsumoto K, Kohriyama M, Dobashi Y, Taguchi T. Org. Lett. 2004; 6: 3605
  • 80 Kitagawa O, Matsuo S, Yotsumoto K, Taguchi T. J. Org. Chem. 2006; 71: 2524
  • 81 De CK, Seidel D. J. Am. Chem. Soc. 2011; 133: 14538
  • 82 Escolano M, Guerola M, Torres J, Gaviña D, Alzuet-Piña G, Sánchez-Rosello M, del Pozo C. Chem. Commun. 2020; 56: 1425
  • 83 Guerola M, Escolano M, Alzuet-Piña G, Gómez-Bengoa E, Ramírez de Arellano C, Sánchez-Roselló M, del Pozo C. Org. Biomol. Chem. 2018; 16: 4650
  • 84 Zhang D, Chen Y, Lai Y, Yang X. Cell Rep. Phys. Sci. 2021; 2: 100413
  • 85 Chu L, Wang X.-C, Moore CE, Rheingold AL, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 16344
  • 86 Laforteza BN, Chan KS. L, Yu J.-Q. Angew. Chem. Int. Ed. 2015; 54: 11143
  • 87 Shao Q, Wu QF, He J, Yu JQ. J. Am. Chem. Soc. 2018; 140: 5322
  • 88 Zou X, Zhao H, Li Y, Gao Q, Ke Z, Senmiao X. J. Am. Chem. Soc. 2019; 141: 5334
  • 89 Bai X.-F, Mu Q.-C, Xu Z, Yang K.-F, Li L, Zheng Z.-J, Xia C.-G, Xu L.-W. ACS Catal. 2019; 9: 1431
  • 90 Han H, Zhang T, Yang S.-D, Lan Y, Xia J.-B. Org. Lett. 2019; 21: 1749
  • 91 Genov GR, Douthwaite JL, Lahdenperä AS. K, Gibson DC, Phipps RJ. Science 2020; 367: 1246
  • 92 Hsieh S.-Y, Tang Y, Crotti S, Stone EA, Miller SJ. J. Am. Chem. Soc. 2019; 141: 18624