Synthesis 2021; 53(02): 193-214
DOI: 10.1055/s-0040-1705939
review

Recent Developments in Transition-Metal-Catalyzed Asymmetric Hydrogenation of Enamides

Sudipta Ponra
a   PSL University, Chimie ParisTech-CNRS, Institute of Chemistry for Life & Health Sciences, CSB2D Team, 11 rue Pierre et Marie Curie, 75005 Paris, France   Email: phannarath.phansavath@chimieparistech.psl.eu   Email: virginie.vidal@chimieparistech.psl.eu
,
Bernard Boudet
b   ORGAPHARM (AXYNTIS Group), Rue du Moulin de la Canne, 45300 Pithiviers, France
,
Phannarath Phansavath
a   PSL University, Chimie ParisTech-CNRS, Institute of Chemistry for Life & Health Sciences, CSB2D Team, 11 rue Pierre et Marie Curie, 75005 Paris, France   Email: phannarath.phansavath@chimieparistech.psl.eu   Email: virginie.vidal@chimieparistech.psl.eu
,
a   PSL University, Chimie ParisTech-CNRS, Institute of Chemistry for Life & Health Sciences, CSB2D Team, 11 rue Pierre et Marie Curie, 75005 Paris, France   Email: phannarath.phansavath@chimieparistech.psl.eu   Email: virginie.vidal@chimieparistech.psl.eu
› Author Affiliations
We thank the Centre National de la Recherche Scientifique (CNRS) and the Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation (MESRI) for financial support. S.P. is grateful to the Fondation de la Maison de la Chimie and ORGAPHARM (AXYNTIS Group) for financial support.


Dedicated to Professor H. B. Kagan on the occasion of his birthday for his outstanding contribution to asymmetric catalysis and organometallic chemistry

Abstract

The catalytic asymmetric hydrogenation of prochiral olefins is one of the most widely studied and utilized transformations in asymmetric synthesis. This straightforward, atom economical, inherently direct and sustainable strategy induces chirality in a broad range of substrates and is widely relevant for both industrial applications and academic research. In addition, the asymmetric hydrogenation of enamides has been widely used for the synthesis of chiral amines and their derivatives. In this review, we summarize the recent work in this field, focusing on the development of new catalytic systems and on the extension of these asymmetric reductions to new classes of enamides.

1 Introduction

2 Asymmetric Hydrogenation of Trisubstituted Enamides

2.1 Ruthenium Catalysts

2.2 Rhodium Catalysts

2.3 Iridium Catalysts

2.4 Nickel Catalysts

2.5 Cobalt Catalysts

3 Asymmetric Hydrogenation of Tetrasubstituted Enamides

3.1 Ruthenium Catalysts

3.2 Rhodium Catalysts

3.3 Nickel Catalysts

4 Asymmetric Hydrogenation of Terminal Enamides

4.1 Rhodium Catalysts

4.2 Cobalt Catalysts

5 Rhodium-Catalyzed Asymmetric Hydrogenation of Miscellaneous Enamides

6 Conclusions



Publication History

Received: 08 July 2020

Accepted after revision: 26 August 2020

Article published online:
20 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Knowles WS. Angew. Chem. Int. Ed. 2002; 41: 1998
    • 1b Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
  • 2 Kagan HB, Dang T.-P. J. Am. Chem. Soc. 1972; 94: 6429
  • 3 Vineyard BD, Knowles WS, Sabacky MJ, Bachman GL, Weinkauff DJ. J. Am. Chem. Soc. 1977; 99: 5946
  • 4 Noyori R, Ohta M, Hsiao Y, Kitamura M, Ohta T, Takaya H. J. Am. Chem. Soc. 1986; 108: 7117
  • 5 Burk MJ, Wang YM, Lee JR. J. Am. Chem. Soc. 1996; 118: 5142
    • 6a Halpern J. Science 1982; 217: 401
    • 6b Halpern J. In Asymmetric Synthesis, Vol. 5. Morrison JD. Academic Press; New York: 1985: 41
    • 6c Brown JM. Chem. Soc. Rev. 1993; 22: 25
    • 6d Brown JM. In Comprehensive Asymmetric Catalysis, Vol. 1. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 1999: 119
    • 6e Gridnev ID, Higashi N, Asakura K, Imamoto T. J. Am. Chem. Soc. 2000; 122: 7183
    • 6f Fabrello A, Bachelier A, Urrutigoïty M, Kalck P. Coord. Chem. Rev. 2010; 254: 273
    • 6g Gridnev ID, Imamoto T. ACS Catal. 2015; 5: 2911
    • 7a Nugent TC, El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
    • 7b Gopalaiah K, Kagan HB. Chem. Rev. 2011; 111: 4599
    • 7c Xie J.-H, Zhu S.-F, Zhou Q.-L. Chem. Rev. 2011; 111: 1713
    • 7d Kleman P, Pizzano A. Tetrahedron Lett. 2015; 56: 6944
    • 7e Zhou Q.-L, Xie J.-H. Top. Curr. Chem. 2014; 343: 75
  • 8 Courant T, Dagousset G, Masson G. Synthesis 2015; 47: 1799
  • 9 Cobley CJ, Evans G, Fanjul T, Simmonds S, Woods A. Tetrahedron Lett. 2016; 57: 986
  • 10 Fan D, Zhang J, Hu Y, Zhang Z, Gridnev ID, Zhang W. ACS Catal. 2020; 10: 3232
  • 11 Biosca M, de la Cruz-Sánchez P, Pàmies O, Diéguez M. J. Org. Chem. 2020; 85: 4730
  • 12 Lou Y, Wang J, Gong G, Guan F, Lu J, Wen J, Zhang X. Chem. Sci. 2020; 11: 851
  • 13 Zhang J, Jia J, Zeng X, Wang Y, Zhang Z, Gridnev ID, Zhang W. Angew. Chem. Int. Ed. 2019; 58: 11505
  • 14 Morokuma K, Irie R, Oikawa M. Tetrahedron Lett. 2019; 60: 2067
  • 15 Du H.-Q, Hu X.-P. Org. Lett. 2019; 21: 8921
  • 16 Huang J, Hong M, Wang C.-C, Kramer S, Lin G.-Q, Sun X.-W. J. Org. Chem. 2018; 83: 12838
  • 17 Li G, Zatolochnaya OV, Wang X.-J, Rodríguez S, Qu B, Desrosiers J.-N, Mangunuru HP. R, Biswas S, Rivalti D, Karyakarte SD, Sieber JD, Grinberg N, Wu L, Lee H, Haddad N, Fandrick DR, Yee NK, Song JJ, Senanayake CH. Org. Lett. 2018; 20: 1725
  • 18 Zhang J, Liu C, Wang X, Chen J, Zhang Z, Zhang W. Chem. Commun. 2018; 54: 6024
  • 19 Gao W, Lv H, Zhang X. Org. Lett. 2017; 19: 2877
  • 20 Biosca M, Magre M, Coll M, Pàmies O, Diéguez M. Adv. Synth. Catal. 2017; 359: 2801
  • 21 Margalef M, Pàmies O, Diéguez M. Chem. Eur. J. 2017; 23: 813
    • 22a Echeverria P.-G, Ayad T, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2016; 48: 2523
    • 22b Ayad T, Phansavath P, Ratovelomanana-Vidal V. Chem. Rec. 2016; 16: 2754
    • 23a Llopis Q, Guillamot G, Phansavath P, Ratovelomanana-Vidal V. Org. Lett. 2017; 19: 6428
    • 23b Ma M, Hou G, Wang J, Zhang X. Tetrahedron: Asymmetry 2011; 22: 506
  • 24 Sokolovskaya MV, Lyubimov SE, Davankov VA. Russ. Chem. Bull. Int. Ed. 2017; 66: 1213
  • 25 Li X, You C, Yang Y, Wang F, Li S, Lv H, Zhang X. Chem. Commun. 2017; 53: 1313
  • 26 Wang Q, Tan X, Zhu Z, Dong X.-Q, Zhang X. Tetrahedron Lett. 2016; 57: 658
    • 27a Duprat de Paule S, Champion N, Ratovelomanana-Vidal V, Genêt J.-P, Dellis P. French Patent 2830254, 2001 , WO200303029259, 2003.
    • 27b Duprat de Paule S, Jeulin S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Eur. J. Org. Chem. 2003; 1931
    • 27c Duprat de Paule S, Jeulin S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Deschaux G, Dellis P. Org. Process Res. Dev. 2003; 7: 399
    • 27d Jeulin S, Duprat de Paule S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5799
    • 27e Jeulin S, Champion N, Dellis P, Ratovelomanana-Vidal V, Genêt J.-P. Synthesis 2005; 3666
  • 28 Royal T, Dudognon Y, Berhal F, Bastard Y, Boudet B, Ayad T, Ratovelomanana-Vidal V. Synlett 2016; 27: 2009
  • 29 Hu Q, Chen J, Zhang Z, Liu Y, Zhang W. Org. Lett. 2016; 18: 1290
  • 30 Campello HR, Parker J, Perry M, Ryberg P, Gallagher T. Org. Lett. 2016; 18: 4124
  • 31 Li P, Zhou M, Zhao Q, Wu W, Hu X, Dong X.-Q, Zhang X. Org. Lett. 2016; 18: 40
  • 32 Kleman P, Barbaro P, Pizzano A. Green Chem. 2015; 17: 3826
  • 33 Jiang J, Lu W, Lv H, Zhang X. Org. Lett. 2015; 17: 1154
  • 34 Ji J, Chen C, Cai J, Wang X, Zhang K, Shi L, Lv H, Zhang X. Org. Biomol. Chem. 2015; 13: 7624
  • 35 Gao M, Meng J.-J, Lv H, Zhang X. Angew. Chem. Int. Ed. 2015; 54: 1885
  • 36 de la Cruz-Sánchez P, Faiges J, Mazloomi Z, Borràs C, Biosca M, Pàmies O, Diéguez M. Organometallics 2019; 38: 4193
  • 37 Alvarez-Yebra R, Rojo P, Riera A, Verdaguer X. Tetrahedron 2019; 75: 4358
  • 38 Biosca M, Magre M, Pàmies O, Diéguez M. ACS Catal. 2018; 8: 10316
  • 39 Yuan Q, Liu D, Zhang W. Org. Lett. 2017; 19: 1144
  • 40 Magre M, Pàmies O, Diéguez M. ACS Catal. 2016; 6: 5186
  • 41 Salomo E, Orgué S, Riera A, Verdaguer X. Angew. Chem. Int. Ed. 2016; 55: 7988
  • 42 Hu Y, Chen J, Li B, Zhang Z, Gridnev ID, Zhang W. Angew. Chem. Int. Ed. 2020; 59: 5371
  • 43 Long J, Gao W, Guan Y, Lv H, Zhang X. Org. Lett. 2018; 20: 5914
  • 44 Li X, You C, Li S, Lv H, Zhang X. Org. Lett. 2017; 19: 5130
  • 45 Gao W, Lv H, Zhang T, Yang Y, Chung LW, Wu Y.-D, Zhang X. Chem. Sci. 2017; 8: 6419
  • 46 Friedfeld MR, Zhong H, Ruck RT, Shevlin M, Chirik PJ. Science 2018; 360: 888
  • 47 Zhong H, Friedfeld MR, Chirik PJ. Angew. Chem. Int. Ed. 2019; 58: 9194
  • 48 Molinaro C, Phillips EM, Xiang B, Milczek E, Shevlin M, Balsells J, Ceglia S, Chen J, Chen L, Chen Q, Fei Z, Hoerrner S, Qi J, de Lera Ruiz M, Tan L, Wan B, Yin J. J. Org. Chem. 2019; 84: 8006
  • 49 Li C, Wan F, Chen Y, Peng H, Tang W, Yu S, McWilliams JC, Mustakis J, Samp L, Maguire RJ. Angew. Chem. Int. Ed. 2019; 58: 13573
  • 50 Guan Y.-Q, Gao M, Deng X, Lv H, Zhang X. Chem. Commun. 2017; 53: 8136
  • 51 Li X, You C, Yang H, Che J, Chen P, Yang Y, Lv H, Zhang X. Adv. Synth. Catal. 2017; 359: 597
  • 52 Meng J, Gao M, Lv H, Zhang X. Org. Lett. 2015; 17: 1842
  • 53 Molinaro C, Scott JP, Shevlin M, Wise C, Ménard A, Gibb A, Junker EM, Lieberman D. J. Am. Chem. Soc. 2015; 137: 999
  • 54 Guan Y.-Q, Han Z, Li X, You C, Tan X, Lv H, Zhang X. Chem. Sci. 2019; 10: 252
  • 55 Amara Z, Poliakoff M, Duque R, Geier D, Franciò G, Gordon CM, Meadows RE, Woodward R, Leitner W. Org. Process Res. Dev. 2016; 20: 1321
  • 56 Geier D, Schmitz P, Walkowiak J, Leitner W, Franciò G. ACS Catal. 2018; 8: 3297
    • 57a Pang Z, Tian M, Li H, Wang L. Catal. Lett. 2017; 147: 893
    • 57b Pang Z.-b, Li H.-f, Tian M, Wang L.-I. Tetrahedron: Asymmetry 2015; 26: 1389
  • 58 Zhong H, Friedfeld MR, Camacho-Bunquin J, Sohn H, Yang C, Delferro M, Chirik PJ. Organometallics 2019; 38: 149
  • 59 Abbas Z, Hu X.-H, Ali A, Xu Y.-W, Hu X.-P. Tetrahedron Lett. 2020; 61: 151860
  • 60 Sawatsugawa Y, Tamura K, Sano N, Imamoto T. Org. Lett. 2019; 21: 8874
  • 61 Margalef J, Borràs C, Alegre S, Alberico E, Pàmies O, Diéguez M. ChemCatChem 2019; 11: 2142
  • 62 Gao W, Wang Q, Xie Y, Lv H, Zhang X. Chem. Asian J. 2016; 11: 231
  • 63 Wang Q, Gao W, Lv H, Zhang X. Chem. Commun. 2016; 52: 11850
  • 64 Rast S, Stephan M, Mohar B. Eur. J. Org. Chem. 2015; 2214
  • 65 Li W, Yang H, Li R, Lv H, Zhang X. ACS Catal. 2020; 10: 2603