Thorac Cardiovasc Surg 2008; 56(7): 379-385
DOI: 10.1055/s-2008-1038729
Original Basic Science

© Georg Thieme Verlag KG Stuttgart · New York

Inotropic, Vasodilating and Preconditioning Actions of Levosimendan in the Heart

K. Meyer1 , J. D. Schipke1 , R. C. Klocke2 , E. Gams3 , B. Korbmacher3
  • 1Research Group Experimental Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
  • 2Internal Medicine, Marienhospital, Vechta, Germany
  • 3Clinic of Thoracic and Cardiovascular Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
Further Information

Publication History

received March 25, 2008

Publication Date:
22 September 2008 (online)

Abstract

Background: Levosimendan improves ventricular function, induces vasodilation and induces myocardial preconditioning. We determined the external efficiency and assessed the effects on arrhythmias. Methods: In isolated, blood-perfused rabbit hearts, levosimendan (0.75 µmol) or placebo was administered, while hemodynamics were recorded. After no-flow ischemia and reperfusion, data were recorded again. Results: Placebo in normoxic hearts did not affect measurements, while levosimendan increased heart rate (+ 18 %) and improved coronary output (+ 52 %), stroke volume (+ 28 %), maximal left ventricular pressure (+ 30 %), maximal rate of pressure increase (+ 36 %), work (+ 68 %), minimal rate of pressure increase (+ 53 %), coronary blood flow (+ 41 %), coronary resistance (− 19 %) and external efficiency (33 %; p < 0.05). During reperfusion, hemodynamics in the levosimendan group were significantly better preserved compared with the placebo group. Early reperfusion arrhythmias were decreased (levosimendan group: 7 ± 3 % vs. placebo group: 25 ± 17 %; p < 0.05). Conclusions: Levosimendan does not impair diastole, dilates coronary vessels, induces pharmacological preconditioning, improves external efficiency and exerts antiarrhythmic properties during reperfusion. As this drug protects the heart from reperfusion injury, it seems well suited for treating dysfunctional hearts after cardiac surgery.

References

  • 1 Rooke G A, Feigl E O. Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting.  Circ Res. 1982;  50 273-286
  • 2 Rehberg S, Ertmer C, Van A H, Lange M, Broking K, Morelli A, Westphal M. [Role of levosimendan in intensive care treatment of myocardial insufficiency].  Anaesthesist. 2007;  56 30-43
  • 3 Arteaga G M, Kobayashi T, Solaro R J. Molecular actions of drugs that sensitize cardiac myofilaments to Ca2+.  Ann Med. 2002;  34 248-258
  • 4 Yokoshiki H, Katsube Y, Sunagawa M, Sperelakis N. The novel calcium sensitizer levosimendan activates the ATP-sensitive K+ channel in rat ventricular cells.  J Pharmacol Exp Ther. 1997;  283 375-383
  • 5 Light P E. Cardiac KATP channels and ischemic preconditioning: current perspectives.  Can J Cardiol. 1999;  15 1123-1130
  • 6 Das B, Sarkar C. Cardiomyocyte mitochondrial KATP channels participate in the antiarrhythmic and antiinfarct effects of KATP activators during ischemia and reperfusion in an intact anesthetized rabbit model.  Pol J Pharmacol. 2003;  55 771-786
  • 7 Schulz R, Rose J, Heusch G. Involvement of activation of ATP-dependent potassium channels in ischemic preconditioning in swine.  Am J Physiol. 1994;  267 H1341-H1352
  • 8 Busk M, Maeng M, Kristensen J, Berg J S, Mortensen U M, Nielsen T T, Nielsen-Kudsk J E. Effects of levosimendan on myocardial infarct size and hemodynamics in a closed-chest porcine ischemia-reperfusion model.  Cardiovasc Drugs Ther. 2006;  20 335-342
  • 9 Lepran I, Pollesello P, Vajda S, Varro A, Papp J G. Preconditioning effects of levosimendan in a rabbit cardiac ischemia-reperfusion model.  J Cardiovasc Pharmacol. 2006;  48 148-152
  • 10 Headrick J P. Aging impairs functional, metabolic and ionic recovery from ischemia-reperfusion and hypoxia-reoxygenation.  J Mol Cell Cardiol. 1998;  30 1415-1430
  • 11 Rüegg J C. The vertebrate heart: modulation of calcium control. Rüegg JC Calcium in Muscle Contraction. Berlin, Heidelberg, New York; Springer 1992: 165-200
  • 12 Rump A F, Acar D, Klaus W. A quantitative comparison of functional and anti-ischaemic effects of the phosphodiesterase-inhibitors, amrinone, milrinone and levosimendan in rabbit isolated hearts.  Br J Pharmacol. 1994;  112 757-762
  • 13 du Toit E F, Muller C A, McCarthy J, Opie L H. Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart.  J Pharmacol Exp Ther. 1999;  290 505-514
  • 14 Todaka K, Wang J, Yi G H, Stennett R, Knecht M, Packer M, Burkhoff D. Effects of levosimendan on myocardial contractility and oxygen consumption.  J Pharmacol Exp Ther. 1996;  279 120-127
  • 15 Sato S, Talukder M A, Sugawara H, Sawada H, Endoh M. Effects of levosimendan on myocardial contractility and Ca2+ transients in aequorin-loaded right-ventricular papillary muscles and indo-1-loaded single ventricular cardiomyocytes of the rabbit.  J Mol Cell Cardiol. 1998;  30 1115-1128
  • 16 Brixius K, Reicke S, Schwinger R H. Beneficial effects of the Ca(2+) sensitizer levosimendan in human myocardium.  Am J Physiol Heart Circ Physiol. 2002;  282 H131-H137
  • 17 Palmer S, Kentish J C. Differential effects of the Ca2+ sensitizers caffeine and CGP 48506 on the relaxation rate of rat skinned cardiac trabeculae.  Circ Res. 1997;  80 682-687
  • 18 Hajjar R J, Schmidt U, Helm P, Gwathmey J K. Ca++ sensitizers impair cardiac relaxation in failing human myocardium.  J Pharmacol Exp Ther. 1997;  280 247-254
  • 19 Korbmacher B, Sunderdiek U, Selcan G, Arnold G, Schipke J D. Different responses on nonischemic and postischemic myocardium towards Ca++ sensitization – effect of Ca++ sensitization in stunned myocardium.  J Mol Cell Cardiol. 1997;  29 2053-2066
  • 20 Hgashiyama A, Watkins M W, Chen Z, LeWinter M M. Effects of EMD 57033 on contraction and relaxation in isolated rabbit hearts.  Circulation. 1995;  92 3094-3104
  • 21 Tamargo J, Lopez-Sendon J. [Rationale and clinical evidence for the effects of new pharmacological treatments for heart failure].  Rev Esp Cardiol. 2004;  57 447-464
  • 22 Barraud D, Faivre V, Damy T, Welschbillig S, Gayat E, Heymes C, Payen D, Shah A M, Mebazaa A. Levosimendan restores both systolic and diastolic cardiac performance in lipopolysaccharide-treated rabbits: comparison with dobutamine and milrinone.  Crit Care Med. 2007;  35 1376-1382
  • 23 Sonntag S, Sundberg S, Lehtonen L A, Kleber F X. The calcium sensitizer levosimendan improves the function of stunned myocardium after percutaneous transluminal coronary angioplasty in acute myocardial ischemia.  J Am Coll Cardiol. 2004;  43 2177-2182
  • 24 Lehtonen L A, Antila S, Pentikainen P J. Pharmacokinetics and pharmacodynamics of intravenous inotropic agents.  Clin Pharmacokinet. 2004;  43 187-203
  • 25 Michaels A D, McKeown B, Kostal M, Vakharia K T, Jordan M V, Gerber I L, Foster E, Chatterjee K. Effects of intravenous levosimendan on human coronary vasomotor regulation, left ventricular wall stress, and myocardial oxygen uptake.  Circulation. 2005;  111 1504-1509
  • 26 Kaheinen P, Pollesello P, Levijoki J, Haikala H. Levosimendan increases diastolic coronary flow in isolated guinea-pig heart by opening ATP-sensitive potassium channels.  J Cardiovasc Pharmacol. 2001;  37 367-374
  • 27 Erdei N, Papp Z, Pollesello P, Edes I, Bagi Z. The levosimendan metabolite OR-1896 elicits vasodilation by activating the K(ATP) and BK(Ca) channels in rat isolated arterioles.  Br J Pharmacol. 2006;  148 696-702
  • 28 Sunderdiek U, Schmitz-Spanke S, Korbmacher B, Gams E, Schipke J D. Left ventricular dysfunction and disturbed O(2)-utilization in stunned myocardium: influence of ischemic preconditioning.  Eur J Cardiothorac Surg. 2001;  20 770-776
  • 29 Trines S A, Slager C J, Onderwater T A, Lamers J M, Verdouw P D, Krams R. Oxygen wastage of stunned myocardium in vivo is due to an increased oxygen cost of contractility and a decreased myofibrillar efficiency.  Cardiovasc Res. 2001;  51 122-130
  • 30 Cohen M V, Baines C P, Downey J M. Ischemic preconditioning: from adenosine receptor of KATP channel.  Annu Rev Physiol. 2000;  62 79-109
  • 31 Post H, Heusch G. Ischemic preconditioning. Experimental facts and clinical perspective.  Minerva Cardioangiol. 2002;  50 569-605
  • 32 Kopustinskiene D M, Pollesello P, Saris N E. Levosimendan is a mitochondrial K(ATP) channel opener.  Eur J Pharmacol. 2001;  428 311-314
  • 33 Gross G J, Fryer R M. Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning.  Circ Res. 1999;  84 (9) 973-979
  • 34 Tritapepe L, De Santis V, Vitale D, Santulli M, Morelli A, Nofroni I, Puddu P E, Singer M, Pietropaoli P. Preconditioning effects of levosimendan in coronary artery bypass grafting – a pilot study.  Br J Anaesth. 2006;  96 694-700
  • 35 Kersten J R, Montgomery M W, Pagel P S, Warltier D C. Levosimendan, a new positive inotropic drug, decreases myocardial infarct size via activation of K(ATP) channels.  Anesth Analg. 2000;  90 5-11
  • 36 Maytin M, Leopold J, Loscalzo J. Oxidant stress in the vasculature.  Curr Atheroscler Rep. 1999;  1 156-164
  • 37 Gasser R, Gasser S, Hammerl R, Hecking C. ATP-abhängige Kaliumkanäle im Herz-Kreislauf-System.  J Kardiol. 2003;  10 (Suppl C) 3-5
  • 38 Takahashi R, Endoh M. Effects of OR-1896, a metabolite of levosimendan, on force of contraction and Ca2+ transients under acidotic condition in aequorin-loaded canine ventricular myocardium.  Naunyn Schmiedebergs Arch Pharmacol. 2002;  366 440-448
  • 39 Hasenfuss G, Pieske B, Castell M, Kretschmann B, Maier L S, Just H. Influence of the novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human myocardium.  Circulation. 1998;  98 2141-2147
  • 40 Vegh A, Szekeres L, Parratt J R. Local intracoronary infusions of bradykinin profoundly reduce the severity of ischaemia-induced arrhythmias in anaesthetized dogs.  Br J Pharmacol. 1991;  104 294-295
  • 41 Sun W, Wainwright C L. The potential antiarrhythmic effects of exogenous and endogenous bradykinin in the ischaemic rat heart in vivo.  Coron Artery Dis. 1994;  5 541-550
  • 42 Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.  Circulation. 1986;  74 1124-1136
  • 43 Marktanner R, Nacke P, Feindt P, Hohlfeld T, Schipke J D, Gams E. Delayed preconditioning via angiotensin-converting enzyme inhibition: pros and cons from an experimental study.  Clin Exp Pharmacol Physiol. 2006;  33 787-792
  • 44 Tosaki A, Hearse D J. Protective effect of transient calcium reduction against reperfusion-induced arrhythmias.  Am J Physiol. 1987;  253 H225-H233
  • 45 Leesar M A, Stoddard M F, Dawn B, Jasti V G, Masden R, Bolli R. Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty.  Circulation. 2001;  103 2935-2941
  • 46 Wang X, Wei M, Kuukasjarvi P, Laurikka J, Jarvinen O, Rinne T, Honkonen E L, Tarkka M. Novel pharmacological preconditioning with diazoxide attenuates myocardial stunning in coronary artery bypass grafting.  Eur J Cardiothorac Surg. 2003;  24 967-973
  • 47 Kumar S, Kumar A, De Santis V. The preconditioning effects of levosimendan.  Br J Anaesth. 2006;  97 425

Prof. Jochen D. Schipke

Research Group Experimental Surgery
University Hospital Düsseldorf

Moorenstraße 5

40225 Düsseldorf

Germany

Phone: + 49 (0) 21 18 11 99 49

Fax: + 49 (0) 21 18 11 69 96

Email: schipke@med.uni-duesseldorf.de

    >