Synthesis 2006(20): 3389-3396  
DOI: 10.1055/s-2006-950243
PAPER
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of 1,4-Dihydrobenzoxathiins via Sulfoxide-Directed Borane Reduction

Marjorie S. Waters*, Ekama Onofiok, David M. Tellers, Jennifer R. Chilenski, Zhiguo Jake Song
Department of Process Research, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA
Fax: +1(732)5941499; e-Mail: marjorie_waters@merck.com ;
Further Information

Publication History

Received 12 May 2006
Publication Date:
10 October 2006 (online)

Abstract

A novel sulfoxide-directed borane reduction was shown to give a variety of 2-substituted 1,4-dihydrobenzoxathiins. For all substrates evaluated, the reaction is completely stereospecific. Application of this methodology to the chiral synthesis of an artificial sweetener was demonstrated.

    References

  • 1a Tegeler JJ. Ong HH. Profitt JA. J. Heterocycl. Chem.  1983,  20:  867 
  • 1b Capozzi G. Lo Nostro P. Menichetti S. Nativi C. Sarri P. Chem. Commun.  2001,  551 
  • 1c Kim S. Wu JY. Birzin ET. Frisch K. Chan W. Lee-Yuh P. Yang YT. Mosley RT. Fitzgerald PMD. Sharma N. Dahllund J. Thorsell A. DiNinno F. Rohrer SP. Schaeffer JM. Hammond ML. J. Med. Chem.  2004,  47:  2171 
  • 1d Melchiorre C. Brasili L. Giardina D. Pigini M. Strappaghetti G. J. Med. Chem.  1984,  27:  1535 
  • 1e Arnoldi A. Bassoli A. Merlini L. Ragg E. J. Chem. Soc., Perkin Trans. 1  1993,  1359 
  • 2 Cabiddu S. Floris C. Melis S. Sotgiu F. Cerioni G. J. Heterocycl. Chem.  1986,  23:  1815 
  • 3 Capozzi G. Falciani C. Menichetti S. Nativi C. J. Org. Chem.  1997,  62:  2611 
  • 4 Kim S. Wu JY. Chen HY. DiNinno F. Org. Lett.  2003,  5:  685 
  • 5 Song ZJ. King AO. Waters MS. Lang F. Zewge D. Bio M. Leazer JL. Javadi G. Kassim A. Tschaen DM. Reamer RA. Rosner T. Chilenski JR. Mathre DJ. Volante RP. Tillyer R. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  5776 
  • 6 The reduction of sulfoxides to sulfides with borane reagents has been reported, see: Cha JS. Kim JE. Kim JD. Tetrahedron Lett.  1985,  26:  6453 ; and references cited therein
  • For reviews on sulfoxide directed reactions, see:
  • 7a Hoveyda AH. Evans DA. Fu GC. Chem. Rev.  1993,  93:  1307 
  • 7b Fernandez I. Khiar N. Chem. Rev.  2003,  103:  3651 
  • 7c Solladie G. Synthesis  1981,  185 
  • 8a This mechanism differs from the hydroboration-type reaction observed on enamino sulfoxides, see: Ogura K. Tomori H. Fujita M. Chem. Lett.  1991,  1407 
  • 8b

    Additional details and discussion of the proposed mechanism can be found in reference 5.

  • For examples of measured kinetic isotope effects for borane reductions, see:
  • 9a Hawthorne FM. Lewis ES. J. Am. Chem. Soc.  1958,  80:  4296 
  • 9b Lewis ES. Grinstein RH. J. Am. Chem. Soc.  1962,  84:  1158 
  • 9c White SS. Kelly HC. J. Am. Chem. Soc.  1970,  92:  4203 
  • 9d Corey EJ. Link JO. Bakshi RK. Tetrahedron Lett.  1992,  33:  7107 
  • 9e Linney LP. Self CR. Williams IH. J. Chem. Soc., Chem. Commun.  1994,  1651 
  • 10 Watanabe S. Mori E. Nagai H. Iwamura T. Iwama T. Kataoka T. J. Org. Chem.  2000,  65:  8893 
  • 11 Katritzky AR. Nikonov GN. Tymoshenko DO. Moyano EL. Steel PJ. Heterocycles  2002,  57:  483 
  • 12 For a review on enantioselective preparation of sulfoxides, see: Kagan HB. In Asymmetric Oxidation of Sulfides in Catalytic Asymmetric Synthesis   Ojima I. Wiley-VCH; New York: 2000.  2nd ed.. p.327-356  
  • 13 Pitchen P. Dunach E. Deshmukh MN. Kagan HB. J. Am. Chem. Soc.  1984,  106:  8188 
  • 14a Komatsu N. Hashizume M. Sugita T. Uemura S. J. Org. Chem.  1993,  58:  4529 
  • 14b Brunel JM. Kagan HB. Synlett  1996,  404 
  • 14c Donnoli MI. Superchi S. Rosini C. J. Org. Chem.  1998,  63:  9392 
  • 14d Matsugi M. Fukuda N. Muguruma Y. Yamaguchi T. Minamikawa J. Otsuka S. Tetrahedron  2001,  57:  2739 
  • 14e Hogan PJ. Hopes PA. Moss WO. Robinson GE. Patel I. Org. Process Res. Dev.  2002,  6:  225 
  • 20 Suetsugu M, and Fujiwara R. inventors; Japanese Patent  JP11029515.  ; Chem. Abstr. 1999, 130, 200767
  • 21 Becker HD. Bjoerk A. Adler E. J. Org. Chem.  1980,  45:  1596 
15

Ti(Oi-Pr)4 (0.15 mol%), diisopropylethylamine (0.3 mol%), diisopropyl tartrate (0.3 mol%), and H2O (0.15 mol%) as the catalyst and cumene hydroperoxide (CHP, 1.2 equiv) as the oxidant. See ref 5.

16

Compounds 5f and 6f were prepared previously, see reference 5 for experimental details.

17

The catalyst was 2:1:1 molar ratio of Ti(Oi-Pr)4/d-diethyl tartrate/H2O in CH2Cl2. The substrate was added to the catalyst solution followed by cumene hydroperoxide (CHP).

18

Crystal data for compound 7e: C19H22O2S, M = 314.44, orthorhombic, P2121 2 1, a = 9.5087(11) Å, b = 9.5799(11) Å, c = 18.842(2) Å, α = 90, β = 90, γ = 90, V = 1716.4(3) Å3, T = 298(2) K, Z = 4, rcalcd = 1.217 Mg/m3, µ = 0.193 mm-1, F(000) 672, 3456 independent reflections (R int = 0.0421), 18173 reflections collected; refinement method, full-matrix least squares refinement on F2; Goodness-of-fit on F2 = 1.024; Final R indices [I > 2σ(I)] R1 = 0.0412, wR2 = 0.0958.

19

A tentative assignment of the S-configuration for 6a-e and 7a-d can be made based on the mechanism and analogy to 7e. This is consistent with the facial selectivity previously reported by us (see ref. 5).

22

Initially, this sequence was done on commercially available 3-benzyloxy-4-methoxy benzaldehyde; however, the dehydrative cyclization failed to give the desired product.