Synlett 2004(9): 1579-1583  
DOI: 10.1055/s-2004-829541
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Spectroscopic Properties of Porphyrin-Substituted Uridine and Deoxyuridine

Imenne Bouamaied, Eugen Stulz*
Department of Chemistry, University of Basel, St. Johanns Ring 19, 4056 Basel, Switzerland
Fax: +41(61)2670976; e-Mail: eugen.stulz@unibas.ch;
Further Information

Publication History

Received 5 April 2004
Publication Date:
01 July 2004 (online)

Abstract

A general synthetic route to porphyrin-substituted uridine and 2′-deoxyuridine using Sonogashira coupling with acetylene porphyrins is presented. Both diphenyl and tetraphenyl porphyrins, as free base or zinc metallated, can be attached to the nucleobase. Selective TBDMS protection of the deoxyribose does not affect the coupling reaction. The substituents on the porphyrins render the conjugates soluble either in organic solvents (carboxy ­esters) or in water (carboxylates). No electronic communication ­between the chromophore and the nucleobase occurs, as indicated by UV/Vis spectroscopy. In aqueous solution, the absorption of the porphyrins is substantially lower than in organic solvents.

    References

  • 1a Sessler LJ. Wang R. J. Org. Chem.  1998,  63:  4079 
  • 1b Iwaura R. Yoshida K. Masuda M. Ohnishi-Kameyama M. Yoshida M. Shimizu T. Angew. Chem. Int. Ed.  2003,  42 (9):  1009 
  • 1c Yan H. Park SH. Finkelstein G. Reif JH. LaBean TH. Science  2003,  301:  1882 
  • 1d Waybright SM. Singleton CP. Wachter K. Murphy CJ. Bunz UHF. J. Am. Chem. Soc.  2001,  123:  1828 
  • 1e Spada GP. Gottarelli G. Synlett  2004,  596 
  • 2a Seela F. Feiling E. Gross J. Hillenkamp F. Ramzaeva N. Rosemeyer H. Zulauf M. J. Biotechnol.  2001,  86:  269 
  • 2b Perrin DM. Garestier T. Helene C. J. Am. Chem. Soc.  2001,  123:  1556 
  • 2c Gourlain T. Sidorov A. Mignet N. Thorpe SJ. Lee SE. Grasby JA. Williams DM. Nucleic Acids Res.  2001,  29:  1898 
  • 2d Sakthivel K. Barbas CF. Angew. Chem. Int. Ed.  1998,  37:  2872 
  • 2e Thum O. Jager S. Famulok M. Angew. Chem. Int. Ed.  2001,  40:  3990 
  • 2f Augustin MA. Ankenbauer W. Angerer B. J. Biotechnol.  2001,  86:  289 
  • 2g Giese B. Amaudrut J. Köhler A.-K. Spormann M. Wessely S. Nature  2001,  412:  318 
  • 2h Hurely DJ. Tor Y. J. Am. Chem. Soc.  2002,  124:  3749 
  • 3a Sirish M. Maiya BG. J. Porphyrins Phthalocyanines  1998,  2:  327 
  • 3b Berman A. Izraeli ES. Levanon H. Wang B. Sessler JL. J. Am. Chem. Soc.  1995,  117:  702 
  • 3c Berman A. Izraeli ES. Levanon H. Wang B. Sessler JL. J. Am. Chem. Soc.  1995,  117:  8252 
  • 4a Solladié N. Aubert N. Gisselbrecht J.-P. Gross M. Sooambar C. Troiani V. Chirality  2003,  15:  S50 
  • 4b Solladié N. Gross M. Tetrahedron Lett.  1999,  40:  3359 
  • 5a Hobbs FW. J. Org. Chem.  1989,  54:  3420 
  • 5b Trévisiol E. Defrancq E. Lhomme J. Laayounb A. Cros P. Tetrahedron  2000,  56:  6501 
  • 5c Khan SI. Beilstein AE. Smith GD. Sykora M. Grinstaff MW. Inorg. Chem.  1999,  38:  2411 
  • 5d Gourlain T. Sidorov A. Mignet N. Thorpe SJ. Lee SE. Grasby JA. Williams DM. Nucleic Acids Res.  2001,  29 (9):  1898 
  • 5e

    Typical Procedure for the Coupling: 3′,5′-di-TBDMS-dU-5-I (66.5 mg, 114 µmol) and CuI (8.8 mg, 45.6 µmol) were dissolved in anhyd DMF (4 mL). Then Et3N (60 µL) and 6 (70 mg, 80 µmol) were added in DMF (2 mL), and the mixture was degassed by purging with Ar in the dark. After 10 min, Pd(PPh3)4 (26.4 mg, 22.8 µmol) was added in one portion and the mixture stirred at r.t. After 48 h, the mixture was diluted with EtOAc (150 mL), and the organic phase was washed with brine (3 × 30 mL) and H2O (2 × 30 mL). The organic phase was dried (Na2SO3) and evaporated; some residual DMF was removed in vacuo. Column chromatography on silica (CH2Cl2-EtOAc 5:1 to CH2Cl2-EtOAc-MeOH 5:1:0.01) and crystallisation from CH2Cl2-hexane yielded 82 mg of 8 (62 µmol, 78%).
    Representative Analytical Data. Compound 8: 1H NMR (400 MHz, CDCl3): δ = 8.95 (s, 2 H, β-pyrrole), 8.94 (s, 2 H, β-pyrrole), 8.92 (s, 2 H, β-pyrrole), 8.91 (s, 2 H, β-pyrrole), 8.43 (d, J = 8 Hz, 6 H, Ph-H), 8.31 (d, J = 8 Hz, 6 H, Ph-H), 8.17 (d, J = 8 Hz, 2 H, Ph-H), 8.03 (s, 1 H, N-H), 7.82 (d, J = 8 Hz, 2 H, Ph-H), 7.72 [s, 1 H, C(6)-H], 6.15 [t, J = 6 Hz, 1 H, C(1′)-H], 4.39 [m, 1 H, C(3′)-H], 4.10 (s, 9 H, COCH3), 3.85 [br s, 1 H, C(4′)-H], 3.82 [d, J = 12 Hz, 1 H, C(5′)-H], 3.73 [d, J = 12 Hz, 1 H, C(5′)-H], 2.32 [m, 1 H, C(2′)-H], 2.03 [m, 1 H, C(2′)-H], 0.97 (s, 9 H, Sit-Bu), 0.91 (s, 9 H, Sit-Bu), 0.23, 0.19, 0.10, 0.09 [4 × s, 12 H, Si-(CH3)2] ppm. MALDI-TOF MS: m/z calcd for C73H72N6O11Si2Zn: 1330.95. Found: 1330.59.
    Compound 5: 1H NMR (400 MHz, CD3OD-CDCl3 9:1): δ = 10.09 (s, 1 H, N-H), 8.48 [s, 1 H, C(6)-H], 8.02 (m, 3 H, Ph-H), 7.89 (d, J = 8 Hz, 2 H, Ph-H), 7.78 (t, J = 8 Hz, 1 H, Ph-H), 7.71 (t, J = 9 Hz, 1 H, Ph-H), 7.57 (s, 2 H, Ph-H), 6.30 [t, J = 6 Hz, C(1′)-H], 4.54 [br s, 1 H, C(5′)-OH], 4.29 (t, J = 8 Hz, 8 H, CH2-CH2CO2CH3), 3.97 [d, J = 3 Hz, 1 H, C(4′)-H], 3.88 [d, J = 11 Hz, 1 H, C(5′)-H], 3.77 [d, J = 11 Hz, 1 H, C(5′)-H], 3.63 (s, 12 H, CH2-CH2CO2CH3), 3.14 (t, J = 8 Hz, 8 H, CH2-CH2CO2CH3), 2.46 (s, 6 H, CH3), 2.42 (s, 6 H, CH3), 0.91 (s, 9 H, Sit-Bu), 0.13 [s, 6 H, Si-(CH3)2] ppm. MALDI-TOF MS: m/z calcd for C69H76N6O13SiZn: 1290.85. Found: 1290.93.
    It should be noted that Sephadex column chromatography (when necessary) was performed in a column of 2 m length, containing approx. 150 g of Sephadex. The mobile phase was allowed to run at a rate of a drop per second.

  • 6a Stulz E. Scott SM. Ng Y.-F. Bond AD. Teat SJ. Darling SL. Feeder N. Sanders JKM. Inorg. Chem.  2003,  42:  6564 
  • 6b Twyman LJ. Sanders JKM. Tetrahedron Lett.  1999,  40:  6681 
  • 7 Bleicher LS. Cosford NDP. Herbaut A. McCallum JS. McDonald IA. J. Org. Chem.  1998,  63:  1109 
  • 8 Littler BJ. Miller MA. Hung C.-H. Wagner RW. O’Shea DF. Boyle PD. Lindsey JS. J. Org. Chem.  1999,  64:  1391 
  • 9a Bhat B. Leonard NJ. Robinson H. Wang AH.-J. J. Am. Chem. Soc.  1996,  118:  10744 
  • 9b Charles I. Xue L. Arya DP. Bioorg. Med. Chem. Lett.  2002,  12:  1259 
  • 9c Wang G. Middleton P. Nucleosides Nucleotides  1998,  17 (6):  1033 
  • 9d Vaino AR. Depew WT. Szarek WA. Chem. Commun.  1997,  19:  1871 
  • 9e Joshi BV. Rao TS. Reese CB. J. Chem. Soc., Perkin Trans. 1  1992,  19:  2537 
  • 10a Sessler JL. Wang B. Harriman A. J. Am. Chem. Soc.  1995,  117:  704 
  • 10b Solladié N. Gross M. Gisselbrecht J.-P. Sooamba C. Chem. Commun.  2001,  2206 
  • 11 Koti ASR. Taneja J. Periasamy N. Chem. Phys. Lett.  2003,  375:  171 
  • 12a Kalyanasundaram K. Neumann-Spallart M. J. Phys. Chem.  1982,  86:  5163 
  • 12b Pasternack RF. Huber PR. Boyd P. Engasser G. Francesconi L. Gibbs E. Fasella P. Venturo GC. Hinds LC. J. Am. Chem. Soc.  1972,  94:  5411