Subscribe to RSS
DOI: 10.1055/s-0043-1775453
Synthesis of 2-Arylpyrroles via an Optimized Palladium Coupling
The authors would like to thank the National Science Foundation (CHE-2247064 and MRI-1919565) for generous support of our research. A.L.O. also thanks the donors of the American Chemical Society Petroleum Research Fund under grant ND3-65702.

Abstract
Using response surface methods, we have re-optimized a palladium-catalyzed method for coupling ClZn(pyrrolide) with aryl bromides to selectively generate 2-arylpyrroles. We optimized based on four variables: temperature, ClZn(pyrrolide)/ArBr ratio, catalyst loading, and time. To find a protocol applicable to most substrates of interest, we optimized three different substrates: a bulky arene (mesityl bromide), an electron-rich arene [4-(NMe2)C6H4Br], and an electron-deficient arene [3,5-(CF3)2C6H3Br]. The re-optimized procedures give as good or better yields than the previously published protocols, always in a fraction of the time. In addition, the reactions are generally cleaner with the new conditions, especially with electron-rich substrates, making the products easier to isolate. We applied the conditions to a variety of different substrates in each category, which provided good to excellent isolated yields.
Key words
palladium catalysis - design of experiments - pyrroles - optimization - cross-coupling - zinc - response surface methodsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775453.
- Supporting Information
Publication History
Received: 16 December 2024
Accepted after revision: 06 February 2025
Article published online:
19 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Basha NJ, Basavarajaiah SM, Shyamsunder K. Mol. Diversity 2022; 26: 2915
- 2 Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
- 3 Bogomolec M, Glavas M, Skoric I. Molecules 2024; 29: 5157
- 4 Bumagina NA, Antina EV, Ksenofontov AA, Antina LA, Kalyagin AA, Berezin MB. Coord. Chem. Rev. 2022; 469: 214684
- 5 Gholap SS. Eur. J. Med. Chem. 2016; 110: 13
- 6 Shukla VK, Chakraborty G, Ray AK, Nagaiyan S. Dyes Pigm. 2023; 215: 111245
- 7 Betley TA, Surendranath Y, Childress MV, Alliger GE, Fu R, Cummins CC, Nocera DG. Philos. Trans. R. Soc., B 2008; 363: 1293
- 8 Betley TA, Wu Q, Van Voorhis T, Nocera DG. Inorg. Chem. 2008; 47: 1849
- 9 Billow BS, McDaniel TJ, Odom AL. Nat. Chem. 2017; 9: 837
- 10 Carsch KM, DiMucci IM, Iovan DA, Li A, Zheng S.-L, Titus CJ, Lee SJ, Irwin KD, Nordlund D, Lancaster KM, Betley TA. Science 2019; 365: 1138
- 11 Carsch KM, Lukens JT, DiMucci IM, Iovan DA, Zheng S.-L, Lancaster KM, Betley TA. J. Am. Chem. Soc. 2020; 142: 2264
- 12 DiFranco SA, Staples RJ, Odom AL. Dalton Trans. 2013; 42: 2530
- 13 Hou Z, Jena R, McDaniel TJ, Billow BS, Lee S, Barr HI, Odom AL. ACS Catal. 2024; 14: 5531
- 14 King ER, Hennessy ET, Betley TA. J. Am. Chem. Soc. 2011; 133: 4917
- 15 Sazama GT, Betley TA. Inorg. Chem. 2010; 49: 2512
- 16 Scharf AB, Betley TA. Inorg. Chem. 2011; 50: 6837
- 17 Swartz DL, Odom AL. Organometallics 2006; 25: 6125
- 18 Swartz DL, Staples RJ, Odom AL. Dalton Trans. 2011; 40: 7762
- 19 Rieth RD, Mankad NP, Calimano E, Sadighi JP. Org. Lett. 2004; 6: 3981
- 20 Haas D, Hammann JM, Greiner R, Knochel P. ACS Catal. 2016; 6: 1540
- 21 Negishi E. Bull. Chem. Soc. Jpn. 2007; 80: 233
- 22 Schley ND, Fu GC. J. Am. Chem. Soc. 2014; 136: 16588
- 23 Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
- 24 Aldrich KE, Kansal D, Odom AL. Faraday Discuss. 2019; 220: 208
- 25 Aldrich KE, Billow BS, Holmes D, Bemowski RD, Odom AL. Organometallics 2017; 36: 1227
- 26 Aldrich KE, Billow BS, Staples RJ, Odom AL. Polyhedron 2019; 159: 284
- 27 Beaumier EP, Billow BS, Singh AK, Biros SM, Odom AL. Chem. Sci. 2016; 7: 2532
- 28 Billow BS, Bemowski RD, DiFranco SA, Staples RJ, Odom AL. Organometallics 2015; 34: 4567
- 29 Carlson R, Carlson JE. Design and Optimization in Organic Synthesis, 2nd ed. Elsevier; Amsterdam: 2005
- 30 Kendall AJ, Zakharov LN, Tyler DR. Inorg. Chem. 2016; 55: 3079
- 31 Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
- 32 Trofimov BA, Mikhaleva AI, Ivanov AV, Shcherbakova VS, Ushakov IA. Tetrahedron 2015; 71: 124
- 33 Qin Y, Zhang Q, Zou W.-Y, Du J.-H, Zhang Z.-H, Shi J.-Z, Wang Z.-Q, Tan X.-J. J. Mol. Struct. 2024; 1313: 138757
- 34 Sugiura S, Matsuda W, Zhang W, Seki S, Yasuda N, Maeda H. J. Org. Chem. 2019; 84: 8886
- 35 Curreli F, Belov DS, Ahmed S, Ramesh RR, Kurkin AV, Altieri A, Debnath AK. ChemMedChem 2018; 13: 2332