Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2025; 36(08): 1044-1048
DOI: 10.1055/s-0043-1775426
DOI: 10.1055/s-0043-1775426
letter
Practical Povidone Iodine Catalyzed Synthesis of 2,5-Disubstituted Oxazoles from Acetophenones and α-Amino Acids
This work was financially supported by Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism (Shanghai Municipal Education Commission).

Abstract
Nonharmful povidone iodine (PVP-I) was applied in the cyclization of acetophenones and α-amino acids to give 2,5-disubstituted oxazoles. Acetophenones with different substituents and natural α-amino acids were applied to our developed method, and more than 38 2,5-disubstituted oxazole compounds were obtained in moderate to good yields. Several naturally active 5-(3-indolyl)oxazole alkaloids such as pimprinine, labradorin, and pimprinol were successfully acquired in moderate yields using this strategy.
Key words
povidone iodine - acetophenones - α-amino acids - oxazoles - 5-(3-indolyl)oxazole alkaloidsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775426.
- Supporting Information
Publication History
Received: 24 July 2024
Accepted after revision: 03 December 2024
Article published online:
10 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Yu XL, Chen KH, Wang Q, Zhang WJ, Zhu J. Chem. Commun. 2018; 54: 1197
- 2 Kakkar S, Narasimhan B. BMC Chem. 2019; 13: 16
- 3 Nassim Z, Ibukun O, Mohammednoor A, Bogdan ZD. Sci. Rep. 2020; 10: 3668
- 4 Momose Y, Maekawa T, Yamano T, Kawada M, Odaka H, Ikeda H, Sohda T. J. Med. Chem. 2002; 45: 1518
- 5 Turchi IJ, Dewar MJ. S. Chem. Rev. 1975; 75: 389
- 6a Lipshutz BH. Chem. Rev. 1986; 86: 795
- 6b Clapham B, Sutherland AJ. J. Org. Chem. 2001; 66: 9033
- 6c Chatani N, Fukuyama T, Tatamidani H, Kakiuchi F, Murai S. J. Org. Chem. 2000; 65: 4039
- 6d Gissibl A, Finn MG, Reiser O. Org. Lett. 2005; 7: 2325
- 7 Atkins JM, Vedejs E. Org. Lett. 2005; 7: 3351
- 8 LaMattina JL, Mularski CJ. Tetrahedron Lett. 1984; 25: 2957
- 9 Wan C, Wang Q, Zhang J, Wang Z. Org. Lett. 2010; 12: 3902
- 10 He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
- 11 Majumdar KC, Ganai S, Nandi RK, Ray K. Tetrahedron Lett. 2012; 53: 1553
- 12 Xu Z, Zhang C, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 11367
- 13a Wipf P, Miller CP. J. Org. Chem. 1993; 58: 3604
- 13b Morwick T, Hrapchak M, DeTuri M, Campbell S. Org. Lett. 2002; 4: 2665
- 14a Moody CJ, Swann E. J. Med. Chem. 1995; 38: 1039
- 14b Panek JS, Beresis RT. J. Org. Chem. 1996; 61: 6496
- 15a Fresneda PM, Molina P. Synlett 2004; 1
- 15b Xie H, Yuan D, Ding MW. J. Org. Chem. 2012; 77: 2954
- 15c Takeuchi H, Yanagida SI, Ozaki T, Hagiwara S, Eguchi S. J. Org. Chem. 1989; 54: 431
- 16 Shi B, Blake AJ, Lewis W, Campbell IB, Judkins BD, Moody CJ. J. Org. Chem. 2010; 75: 152
- 17a Budeev A, Kantin G. Molecules 2021; 26: 2530
- 17b Nicole SY. L, Subin C, Sunggak K, Cheol-Min P. Chem. Commun. 2016; 52: 7336
- 17c Stefano B, Nicholas CO. T. Heterocycles 2014; 89: 2479
- 18 Wiegand EE, Rathburn DW. Synthesis 1970; 648
- 19a Zhang ML, Zhang SH, Liu MC, Cheng J. J. Chem. Commun. 2011; 47: 11522
- 19b Shen XB, Zhang Y, Chen WX, Xiao ZK, Hu TT, Shao LX. Org. Lett. 2014; 16: 1984
- 20 Xu W, Kloeckner U, Nachtsheim BJ. J. Org. Chem. 2013; 78: 6065
- 21a Joshi BS, Taylor WI, Bhate BS, Karmarkar SS. Tetrahedron 1963; 19: 1437
- 21b Naik SR, Harindran J, Varde AB. J. Biotechnol. 2001; 88: 1
- 21c Shi Z, Nie K, Liu C, Zhang MZ, Zhang WH. Chin. J. Org. Chem. 2020; 40: 327
- 22a Broberg A, Bjerketorp J, Andersson P, Sahlberg C, Levenfors JJ. Molecules 2017; 22: 1072
- 22b Miyake F, Hashimoto M, Tonsiengsom S, Yakushijin K, Horne DA. Tetrahedron 2010; 66: 4888
- 23a Raju R, Gromyko O, Fedorenko V, Luzhetskyy A, Mueller R. Tetrahedron Lett. 2012; 53: 3009
- 23b Xiang JC, Wang JG, Wang M, Meng XG, Wu AX. Tetrahedron 2014; 70: 7470
- 24a Hu T, Yan H, Liu XX, Wu CY, Fan YX, Huang J, Huang GS. Synlett 2015; 26: 2866
- 24b Wang JG, Cheng Y, Xiang JC, Wu AX. Synlett 2019; 30: 743
- 24c Wu X, Gao QH, Liu S, Wu AX. Org. Lett. 2014; 16: 2888
- 24d Xiang JC, Wang JG, Wang M, Meng XG, Wu AX. Tetrahedron 2014; 70: 7470
- 25 Typical Procedure for the Preparation of 2-(sec-Butyl)-5-(p-tolyl)oxazole (3a) To a 25.0 mL round-bottomed flask were added 1a (2.5 mmol), 2a (2.5 mmol), PVP-I (10.0 mol%), CuCl2·2H2O (5.0 mmol), and DMSO (8.0 mL). The mixture was stirred at 80 °C for 16 h. After starting material was consumed completely (monitored by TLC), the mixture was suspended in water (20.0 mL) and extracted with EtOAc (3 × 10.0 mL). The organic layer was washed with saturated Na2S2O3 solution (20.0 mL) and brine (20.0 mL) and then dried over Na2SO4. After filtration and concentration under reduced pressure, the residues were purified by flash column chromatography, eluting with n-heptane–EtOAc to afford pure 3a as a yellow oil (397 mg, 74%). 1H NMR (400 MHz, CDCl3): δ = 7.50 (d, J = 8.0 Hz, 2 H), 7.24 (s, 1 H), 7.20 (d, J = 8.0 Hz, 2 H), 2.97–2.95 (m, 1 H), 2.37 (s, 3 H), 1.90–1.85 (m, 1 H), 1.74–1.67 (m, 1 H), 1.38 (d, J = 6.0 Hz, 3 H), 0.95 (t, J = 7.2 Hz, 3 H). 13C NMR (151 MHz, CDCl3): δ = 138.0, 129.5, 125.7, 124.0, 121.0, 35.4, 28.2, 21.3, 17.9, 11.7. EIMS (EI, 70 eV): m/z calcd for [C14H17NO]+: 215.1310; found: 215.1. Rf = 0.5 (n-heptane/EtOAc = 5:1)