Synthesis 2021; 53(07): 1349-1355
DOI: 10.1055/s-0040-1706549
paper

DBU-Promoted Formal [4+2] Annulation Reactions of o-Chloromethyl Anilines with Azlactones

Haojie Ji
a   Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. of China   Email: jfxu@zstu.edu.cn
,
Chonglong He
a   Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. of China   Email: jfxu@zstu.edu.cn
,
Hongjie Gao
b   Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. of China
,
Weijun Fu
c   College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, P. R. of China
,
Jianfeng Xu
a   Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. of China   Email: jfxu@zstu.edu.cn
› Author Affiliations
We gratefully acknowledge the Natural Science Foundation of Zhejiang Province (Grant No. LY20B020002) and the Fundamental Research Funds of Zhejiang Sci-Tech University (Grant No. 2020Q045) for financial support.


Abstract

An efficient 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-mediated formal [4+2] annulation reaction of aza-ortho-quinone methides (aza-oQMs) (generated from o-chloromethyl anilines) with enolates (formed from azlactones) is disclosed, delivering biologically significant 3,4-dihydroquinolin-2(1H)-one derivatives in moderate to good yields. The salient features of this reaction include readily accessible starting materials, broad substrate scope, mild reaction conditions, removable protecting groups, and a scalable synthetic approach.

Supporting Information



Publication History

Received: 11 August 2020

Accepted after revision: 23 September 2020

Article published online:
02 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Joule JA, Mills K. Heterocyclic Chemistry, 5th ed. John Wiley & Sons; Chichester: 2010

    • For a review, see:
    • 2a Meiring L, Petzer JP, Petzer A. Mini Rev. Med. Chem. 2018; 18: 828

    • For selected examples, see:
    • 2b Uchida R, Imasato R, Shiomi K, Tomoda H, Omura S. Org. Lett. 2005; 7: 5701
    • 2c Ma S.-S, Mei W.-L, Guo Z.-K, Liu S.-B, Zhao Y.-X, Yang D.-L, Zeng Y.-B, Jiang B, Dai H.-F. Org. Lett. 2013; 15: 1492
    • 2d Davies MA, Sheffler DJ, Roth BL. CNS Drug Rev. 2004; 10: 317
    • 2e Chapman TM, Goa KL. Am. J. Cardiovasc. Drugs 2003; 3: 117
    • 3a Kusumoto S, Akiyama M, Nozaki K. J. Am. Chem. Soc. 2013; 135: 18726
    • 3b Chen W, Sun C, Zhang Y, Hu T, Zhu F, Jiang X, Abame MA, Yang F, Suo J, Shi J, Shen J, Aisa HA. J. Org. Chem. 2019; 84: 8702
    • 3c Koshizawa T, Morimoto T, Watanabe G, Watanabe T, Yamasaki N, Sawada Y, Fukuda T, Okuda A, Shibuya K, Ohgiya T. Bioorg. Med. Chem. Lett. 2017; 27: 3249
    • 3d Ogata O, Nara H, Matsumura K, Kayaki Y. Org. Lett. 2019; 21: 9954

      For selected recent examples, see:
    • 4a Zhang L, Sonaglia L, Stacey J, Lautens M. Org. Lett. 2013; 15: 2128
    • 4b Li B, Park Y, Chang S. J. Am. Chem. Soc. 2014; 136: 1125
    • 4c Wang F.-X, Tian S.-K. J. Org. Chem. 2015; 80: 12697
    • 4d Zhu Y.-L, Jiang B, Hao W.-J, Wang A.-F, Qiu J.-K, Wei P, Wang D.-C, Li G, Tu S.-J. Chem. Commun. 2016; 52: 1907
    • 4e Petersen WF, Taylor RJ. K, Donald JR. Org. Lett. 2017; 19: 874
    • 4f Petersen WF, Taylor RJ. K, Donald JR. Org. Biomol. Chem. 2017; 15: 5831
    • 4g Jin J.-H, Wang H, Yang Z.-T, Yang W.-L, Tang W, Deng W.-P. Org. Lett. 2018; 20: 104
    • 4h Bai Q.-F, Jin C, He J.-Y, Feng G. Org. Lett. 2018; 20: 2172
    • 4i Faggyas RJ, Grace M, Williams L, Sutherland A. J. Org. Chem. 2018; 83: 12595
    • 4j Ruan Z, Huang Z, Xu Z, Mo G, Tian X, Yu X.-Y, Ackermann L. Org. Lett. 2019; 21: 1237
    • 4k Trost BM, Nagaraju A, Wang F, Zuo Z, Xu J, Hull KL. Org. Lett. 2019; 21: 1784
    • 4l Xu X, Luo Z, Liu C.-F, Wang X, Deng L, Gao J. Asian J. Org. Chem. 2019; 8: 1903
    • 5a Li M.-M, Wei Y, Liu J, Chen H.-W, Lu L.-Q, Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 14707
    • 5b Jin J.-H, Wang H, Yang Z.-T, Yang W.-L, Tang W, Deng W.-P. Org. Lett. 2018; 20: 104
    • 5c Sun M, Wan X, Zhou S.-J, Mei G.-J, Shi F. Chem. Commun. 2019; 55: 1283
    • 5d Zhao H.-W, Ding W.-Q, Guo J.-M, Wang L.-R, Song X.-Q, Fan X.-Z, Tang Z, Wu H.-H, Bia X.-F. Adv. Synth. Catal. 2019; 361: 4111
    • 5e Wang Y.-N, Xiong Q, Lu L.-Q, Zhang Q.-L, Wang Y, Lan Y, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 11013
    • 5f Singha S, Serrano E, Mondal S, Daniliuc CG, Glorius F. Nat. Catal. 2020; 3: 48
    • 6a Song J, Zhang Z.-J, Gong L.-Z. Angew. Chem. Int. Ed. 2017; 56: 5212
    • 6b Lu X, Ge L, Cheng C, Chen J, Cao W, Wu X. Chem. Eur. J. 2017; 23: 7689
    • 6c Lu S, Ong J.-Y, Poh SB, Tsang T, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 5714
    • 6d Simlandy AK, Ghosh B, Mukherjee S. Org. Lett. 2019; 21: 3361
    • 6e Sun B.-B, Hu Q.-X, Hu J.-M, Yu J.-Q, Jia J, Wang X.-W. Tetrahedron Lett. 2019; 60: 1967
    • 7a Lee A, Younai A, Price CK, Izquierdo J, Mishra RK, Scheidt KA. J. Am. Chem. Soc. 2014; 136: 10589
    • 7b Steinhagen H, Corey EJ. Angew. Chem. Int. Ed. 1999; 38: 1928
    • 7c Avemaria F, Vanderheiden S, Bräse S. Tetrahedron 2003; 59: 6785
    • 7d Yang Q.-Q, Xiao C, Lu L.-Q, An J, Tan F, Li BJ, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 9137
    • 7e Yang Q.-Q, Wang Q, An J, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2013; 19: 8401
    • 7f Hovey MT, Check CT, Sipher AF, Scheidt KA. Angew. Chem. Int. Ed. 2014; 53: 9603
    • 7g Zhan G, Shi M.-L, He Q, Du W, Chen Y.-C. Org. Lett. 2015; 17: 4750
    • 7h Wang L, Li S, Blumel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110
    • 7i Zhi Y, Zhao K, Shu T, Enders D. Synthesis 2016; 48: 238
    • 7j Zheng Y.-S, Tu L, Gao L.-M, Huang R, Feng T, Sun H, Wang W.-X, Li Z.-H, Liu J.-K. Org. Biomol. Chem. 2018; 16: 2639
    • 7k Guo Z, Jia H, Liu H, Wang Q, Huang J, Guo H. Org. Lett. 2018; 20: 2939
    • 7l Jin Q, Gao M, Zhang D, Jiang C, Yao N, Zhang J. Org. Biomol. Chem. 2018; 16: 7336
    • 7m Jin Q, Zhang J, Jiang C, Zhang D, Gao M, Hu S. J. Org. Chem. 2018; 83: 8410
    • 7n Meng Z, Yang W, Zheng J. Tetrahedron Lett. 2019; 60: 1758
    • 7o Lei L, Yao Y.-Y, Jiang L.-J, Lu X, Liang C, Mo D.-L. J. Org. Chem. 2020; 85: 3059
  • 9 CCDC 2009852 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 10a Kalek M, Fu GC. J. Am. Chem. Soc. 2015; 137: 9438
    • 10b de Mello AC, Momo PB, Burtoloso AC. B, Amarante GW. J. Org. Chem. 2018; 83: 11399