Synthesis 2018; 50(19): 3886-3890
DOI: 10.1055/s-0037-1609577
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient One-Step Synthesis of Dihydroquinoline and Its Application as a Fluorescence Sensor for Selective Detection of Copper (II)

Kamrul Hassan
a   Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand   Email: anawat77@hotmail.com
,
Lamduan Jonsai
a   Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand   Email: anawat77@hotmail.com
,
Pawitporn Sittapairoj
a   Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand   Email: anawat77@hotmail.com
,
Vachiraporn Ajavakom
b   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
,
Mongkol Sukwattanasinitt
a   Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand   Email: anawat77@hotmail.com
,
Anawat Ajavakom*
a   Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand   Email: anawat77@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 28 December 2017

Accepted after revision: 08 June 2018

Publication Date:
26 July 2018 (online)


Abstract

An efficient one-step synthetic pathway to dihydroquinoline (DHQ) and benzodihydroquinoline (BDHQ) derivatives involving 1,2-Michael addition reaction between amino phenol/naphthol and two molecules of methyl propiolate followed by intramolecular cyclization and aromatization using cuprous iodide as a catalyst was successfully developed. The synthesized DHQ derivatives displayed highly selective fluorescence quenching in the presence of copper(II) with a very low detection limit (LOD for DHQ is 0.20 μM). Moreover, the mechanisms of both formation of the corresponding DHQ and the fluorescence quenching by copper(II) are proposed along with the evidence of X-ray diffraction data.

 
  • References

  • 1 Cotruvo JA. Aron AT. Jr. Ramos-Torres KM. Chang CJ. Chem. Soc. Rev. 2015; 44: 4400
  • 2 Zhou C. Song Y. Xiao N. Li Y. Xu J. J. Fluoresc. 2014; 24: 1331
  • 3 Flemming CA. Trevors JT. Water, Air, Soil Pollut. 1989; 44: 143
  • 4 Multhaup G. Schlicksupp A. Hesse L. Beher D. Ruppert T. Masters CL. Beyreuther K. Science 1996; 271: 1406
  • 5 Madsen E. Gitlin JD. Annu. Rev. Neurosci. 2007; 30: 317
  • 6 Bull PC. Thomas GR. Rommens JM. Forbes JR. Cox DW. Nat. Genet. 1993; 5: 327
  • 7 Vulpe C. Levinson B. Whitney S. Packman S. Gitschier J. Nat. Genet. 1993; 3: 7
  • 8 Brown DR. Kozlowsk H. Dalton Trans. 2004; 1907
  • 9 Reddy SA. Reddy KJ. Narayana SL. Reddy AV. Food Chem. 2008; 109: 654
  • 10 Chan MS. Huang SD. Talanta 2000; 51: 373
  • 11 Lin M. Cho M. Choe W. Son Y. Lee Y. Electrochim. Acta 2009; 54: 7012
  • 12 You G. Lee JJ. Choi YW. Lee SY. Kim C. Tetrahedron 2016; 72: 875
  • 13 Wu J. Boyle EA. Anal. Chem. 1997; 69: 2464
  • 14 Sirilaksanapong S. Sukwattanasinitt M. Rashatasakhon P. Chem. Commun. 2012; 293
  • 15 Borase PN. Thale PB. Shankarling GS. Dyes Pigm. 2016; 134: 276
  • 16 Torawane P. Sahoo SK. Borse A. Kuwar A. Luminescence 2017; 32: 1426
  • 17 Garcaí-Beltrán O. Cassels BK. Pérez C. Mena N. Núñez MT. Martníez NP. Pavez P. Aliaga ME. Sensors 2014; 14: 1358
  • 18 Elmas SN. K. Ozen F. Koran K. Yilmaz I. Gorgulu AO. Erdemir S. J. Fluoresc. 2017; 27: 463
  • 19 Katritzky AR. Chem. Rev. 2004; 104: 2125
  • 20 Ranu BC. Hajra A. Dey SS. Jana U. Tetrahedron 2003; 59: 813
  • 21 Liu XY. Ding P. Huang JS. Che CM. Org. Lett. 2007; 9: 2645
  • 22 Arisawa M. Theeraladanon C. Nishida A. Nakagawa M. Tetrahedron Lett. 2001; 42: 8029
  • 23 Yi CS. Yun SY. J. Am. Chem. Soc. 2005; 127: 17000
  • 24 Wang Z. Li S. Yu B. Wu H. Wang Y. Sun X. J. Org. Chem. 2012; 77: 8615
  • 25 Chu X. Zi Y. Meng H. Xu X. Ji S. Org. Biomol. Chem. 2014; 12: 4243