Synthesis 2016; 48(22): 3957-3964
DOI: 10.1055/s-0035-1562461
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Tröger’s Base Analogues via a Phase-Transfer-Catalyzed Double Aza-Michael Reaction under Base-Free Conditions

Takuya Kamiyama
ETH Zurich Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland   Email: cvengros@inorg.chem.ethz.ch
,
Lukas Sigrist
ETH Zurich Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland   Email: cvengros@inorg.chem.ethz.ch
,
Ján Cvengroš*
ETH Zurich Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland   Email: cvengros@inorg.chem.ethz.ch
› Author Affiliations
Further Information

Publication History

Received: 18 April 2016

Accepted after revision: 06 June 2016

Publication Date:
19 July 2016 (online)


Abstract

The potential of phase-transfer catalysis in the synthesis of Tröger’s base analogues via a double aza-Michael addition has been evaluated. It has been observed that no external base is required and PTC may significantly enhance the efficiency of the process or control the selectivity.

Supporting Information

 
  • References

    • 1a Sergeyev S. Helv. Chim. Acta 2009; 92: 415
    • 1b Rúnarsson ÖV, Artacho J, Wärnmark K. Eur. J. Org. Chem. 2012; 7015
    • 1c Dolenský B, Havlík M, Král V. Chem. Soc. Rev. 2012; 41: 3839
    • 2a Hof F, Scofield DM, Schweizer WB, Diederich F. Angew. Chem. Int. Ed. 2004; 43: 5056
    • 2b Bhayana B, Wilcox CS. Angew. Chem. Int. Ed. 2007; 46: 6833
    • 2c Bhayana B. J. Org. Chem. 2013; 78: 6758
    • 2d Bhaskar Reddy M, Shailaja M, Manjula A, Premkumar JR, Sastry GN, Sirisha K, Sarma AV. S. Org. Biomol. Chem. 2015; 13: 1141
    • 3a Banerjee S, Bright SA, Smith JA, Burgeat J, Martinez-Calvo M, Williams DC, Kelly JM, Gunnlaugsson T. J. Org. Chem. 2014; 79: 9272
    • 3b Murphy S, Bright SA, Poynton FE, McCabe T, Kitchen JA, Veale EB, Williams DC, Gunnlaugsson T. Org. Biomol. Chem. 2014; 12: 6610
    • 3c Kaplánek R, Havlík M, Dolenský B, Rak J, Džubák P, Konečný P, Hajdúch M, Králová J, Král V. Bioorg. Med. Chem. 2015; 23: 1651
    • 4a Shen Y.-M, Zhao M.-X, Xu J, Shi Y. Angew. Chem. Int. Ed. 2006; 45: 8005
    • 4b Didier D, Sergeyev S. ARKIVOC 2009; (xiv): 124
    • 4c Du X, Sun YL, Tan BE, Teng QF, Yao XJ, Su CY, Wang W. Chem. Commun. 2010; 46: 970
    • 4d Cabrero-Antonino JR, García T, Rubio-Marques P, Vidal-Moya JA, Leyva-Perez A, Al-Deyab SS, Al-Resayes SI, Díaz U, Corma A. ACS Catal. 2011; 1: 147
    • 4e Cuenú F, Abonia R, Bolaños A, Cabrera A. J. Organomet. Chem. 2011; 696: 1834
    • 4f Pereira R, Cvengroš J. J. Organomet. Chem. 2013; 729: 81
    • 4g Pereira R, Cvengroš J. Eur. J. Org. Chem. 2013; 4233
    • 5a Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen JC, Bernardo P, Bazzarelli F, McKeown NB. Science 2013; 339: 303
    • 5b Wang Z, Wang D, Zhang F, Jin J. ACS Macro Lett. 2014; 3: 597
    • 5c Zhuang Y, Seong JG, Do YS, Jo HJ, Cui Z, Lee J, Lee YM, Guiver MD. Macromolecules 2014; 47: 3254
    • 5d Byun J, Je S.-H, Patel HA, Coskun A, Yavuz CT. J. Mater. Chem. A 2014; 2: 12507
  • 6 Jensen J, Wärnmark K. Synthesis 2001; 1873
  • 7 Webb TH, Suh HS, Wilcox CS. J. Am. Chem. Soc. 1991; 113: 8554
  • 8 Li Z, Xu X, Peng Y, Jiang Z, Ding C, Qian X. Synthesis 2005; 1228
  • 9 Maitra U, Bag BG. J. Org. Chem. 1992; 57: 6979
  • 10 Satishkumar S, Periasamy M. Tetrahedron: Asymmetry 2006; 17: 1116
    • 11a Webb TH, Wilcox CS. J. Org. Chem. 1990; 55: 363
    • 11b Didier D, Sergeyev S. Tetrahedron 2007; 63: 3864
  • 12 Pujari SA, Besnard C, Bürgi T, Lacour J. Angew. Chem. 2015; 127: 7630
  • 13 Mahon AB, Craig DC, Try AC. ARKIVOC 2008; (xii): 148
  • 14 Johnson RA, Gorman RR, Wnuk RJ, Crittenden NJ, Aiken JW. J. Med. Chem. 1993; 36: 3202
    • 15a Lauber A, Zelenay B, Cvengroš J. Chem. Commun. 2014; 50: 1195
    • 15b Kohrt S, Santschi N, Cvengroš J. Chem. Eur. J. 2016; 22: 390
  • 16 Laforteza BN, Pickworth M, MacMillan DW. C. Angew. Chem. Int. Ed. 2013; 52: 11269
    • 18a Wang J, Li P, Choy PY, Chan AS. C, Kwong FY. ChemCatChem 2012; 4: 917
    • 18b Sanchez-Rosello M, Acena JL, Simon-Fuentes A, del Pozo C. Chem. Soc. Rev. 2014; 43: 7430
    • 19a Fioravanti S, Mascia MG, Pellacani L, Tardella PA. Tetrahedron 2004; 60: 8073
    • 19b Bandini M, Eichholzer A, Tragni M, Umani-Ronchi A. Angew. Chem. Int. Ed. 2008; 47: 3238
    • 19c Mahe O, Dez I, Levacher V, Briere JF. Org. Biomol. Chem. 2012; 10: 3946
    • 19d Lee H.-J, Cho C.-W. J. Org. Chem. 2015; 80: 11435
    • 19e Guo J, Yu S. Org. Biomol. Chem. 2015; 13: 1179
    • 19f Lebrun S, Sallio R, Dubois M, Agbossou-Niedercorn F, Deniau E, Michon C. Eur. J. Org. Chem. 2015; 1995
    • 19g Lee S.-J, Bae J.-Y, Cho C.-W. Eur. J. Org. Chem. 2015; 6495
  • 20 Shirakawa S, Tokuda T, Kasai A, Maruoka K. Org. Lett. 2013; 15: 3350
  • 21 Shirakawa S, Maruoka K. Tetrahedron Lett. 2014; 55: 3833
  • 22 Heiss C, Laivenieks M, Zeikusd JG, Phillips RS. Bioorg. Med. Chem. 2001; 9: 1659
  • 23 Weerasiri KC, Gorden AE. V. Eur. J. Org. Chem. 2013; 1546
  • 24 Arnold DM, Laporte MG, Anderson SM, Wipf P. Tetrahedron 2013; 69: 7719
  • 25 Kim HY, Oh K. Org. Lett. 2014; 16: 5934
  • 26 Dolci L, Dolle F, Valette H, Vaufrey F, Fuseau C, Bottlaender M, Crouzel C. Bioorg. Med. Chem. 1999; 7: 467