Synthesis 2016; 48(18): 3065-3076
DOI: 10.1055/s-0035-1561646
paper
© Georg Thieme Verlag Stuttgart · New York

Aluminum Chloride Mediated Reactions of N-Alkylated Tosyl­hydrazones and Terminal Alkynes: A Regioselective Approach to 1,3,5-Trisubstituted Pyrazoles

Meng Tang*
School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. of China   eMail: tangmeng@lzu.edu.cn
,
Yun Wang
School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. of China   eMail: tangmeng@lzu.edu.cn
,
Hu Wang
School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. of China   eMail: tangmeng@lzu.edu.cn
,
Yuanfang Kong
School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. of China   eMail: tangmeng@lzu.edu.cn
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 24. März 2016

Accepted after revision: 25. April 2016

Publikationsdatum:
24. Mai 2016 (online)


Abstract

Aluminum chloride mediated reactions of N-alkylated tosylhydrazones and terminal alkynes are reported. The protocol is applied to a wide range of substrates, and demonstrates excellent functional group tolerance. A series of 1,3,5-trisubstituted pyrazoles is prepared in good to high yields with complete regioselectivity.

Supporting Information

 
  • References

    • 1a Elguero J In Comprehensive Heterocyclic Chemistry . Vol. 5. Katritzky AR, Rees CW, Scriven EF. V. Pergamon; Oxford: 1996
    • 1b Hirai K, Uchida A, Ohno R In Herbicide Classes in Development . Boger P, Hirai K, Wakabyashi K. Springer-Verlag; Heidelberg: 2002: 179
    • 2a Nieto S, Pérez J, Riera L, Riera V, Miguel D. Chem. Eur. J. 2006; 12: 2244
    • 2b Moyano S, Serrano JL, Elduque A, Gimenez R. Soft Matter 2012; 8: 6799
  • 3 Cavero E, Uriel S, Romero P, Serrano JL, Giménez R. J. Am. Chem. Soc. 2007; 129: 11608

    • For selected recent examples, see:
    • 4a Pathak RB, Chovatia PT, Parekh HH. Bioorg. Med. Chem. Lett. 2012; 22: 5129
    • 4b Abu TB, Arnsmann M, Totzke F, Ehlert JE, Kubbutat MH. G, Schachtele C, Zimmermann MO, Koch P, Boeckler FM, Laufer SA. J. Med. Chem. 2012; 55: 961
    • 4c Donohue SR, Dannals RF, Halldin C, Pike VW. J. Med. Chem. 2011; 54: 2961
    • 4d Dai H.-X, Stepan AF, Plummer MS, Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7222
  • 5 Knorr L. Ber. 1883; 16: 2587

    • For selected reviews about pyrazole synthesis, see:
    • 6a Pizzuti L, Barschak AG, Stefanello FM, Farias MD, Lencina C, Roesch-Ely M, Cunico W, Moura S, Pereira CM. P. Curr. Org. Chem. 2014; 18: 115
    • 6b Janin YL. Chem. Rev. 2012; 112: 3924
    • 6c Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem. Rev. 2011; 111: 6984
    • 6d Dadiboyena S, Nefzi A. Eur. J. Med. Chem. 2011; 46: 5258
    • 6e Fustero S, Simón-Fuentes A, Sanz-Cervera JF. Org. Prep. Proced. Int. 2009; 41: 253
    • 6f Makino K, Kim HS, Kurasawa Y. J. Heterocycl. Chem. 1999; 36: 321
    • 6g Makino K, Kim HS, Kurasawa Y. J. Heterocycl. Chem. 1998; 35: 489

      For selected recent examples about pyrazole synthesis, see:
    • 7a Li DY, Mao XF, Chen HJ, Chen GR, Liu PN. Org. Lett. 2014; 16: 3476
    • 7b Guo H, Zhang D, Zhu C, Li J, Xu G, Sun J. Org. Lett. 2014; 16: 3110
    • 7c Schneider Y, Prévost J, Gobin M, Legault CY. Org. Lett. 2014; 16: 596
    • 7d Sun A, Ye J.-H, Yu H, Zhang W, Wang X. Tetrahedron Lett. 2014; 55: 889
    • 7e Shao N, Chen T, Zhang T, Zhu H, Zheng Q, Zou H. Tetrahedron 2014; 70: 795
    • 7f Kumar R, Nair D, Namboothiri IN. N. Tetrahedron 2014; 70: 1794
    • 7g Harigae R, Moriyama K, Togo H. J. Org. Chem. 2014; 79: 2049
    • 7h Tran G, Pardo DG, Tsuchiya T, Hillebrand S, Vors J.-P, Cossy J. Org. Lett. 2013; 15: 5550
    • 7i Zhang G, Ni H, Chen W, Shao J, Liu H, Chen B, Yu Y. Org. Lett. 2013; 15: 5967
    • 7j Wang L, Yu X, Feng X, Bao M. J. Org. Chem. 2013; 78: 1693
    • 7k Li X, He L, Chen H, Wu W, Jiang H. J. Org. Chem. 2013; 78: 3636
    • 7l Xu S.-X, Hao L, Wang T, Ding Z.-C, Zhan Z.-P. Org. Biomol. Chem. 2013; 11: 294
    • 7m Hao L, Hong J.-J, Zhu J, Zhan Z.-P. Chem. Eur. J. 2013; 19: 5715
    • 7n Foster RS, Jakobi H, Harrity JP. A. Org. Lett. 2012; 14: 4858
    • 7o Hu J, Chen S, Sun Y, Yang J, Rao Y. Org. Lett. 2012; 14: 5030
    • 7p Kirkham JD, Edeson SJ, Stokes S, Harrity JP. A. Org. Lett. 2012; 14: 5354
    • 7q Liu P, Pan Y.-M, Xu Y.-L, Wang H.-S. Org. Biomol. Chem. 2012; 10: 4696
    • 7r Borkin DA, Puscau M, Carlson A, Solan A, Wheeler KA, Török B, Dembinski R. Org. Biomol. Chem. 2012; 10: 4505
    • 7s Kumara CK, Trivedia R, Kumara KR, Giribabua L, Sridhar B. J. Organomet. Chem. 2012; 718: 64
    • 7t Yoshimatsu M, Ohta K, Takahashi N. Chem. Eur. J. 2012; 18: 15602
    • 7u Panda N, Jena AK. J. Org. Chem. 2012; 77: 9401
    • 8a Gerstenberger BS, Rauckhorst MR, Starr JT. Org. Lett. 2009; 11: 2097
    • 8b Heller ST, Natarajan SR. Org. Lett. 2006; 8: 2675
    • 8c Peruncheralathan S, Khan TA, Ila H, Junjappa H. J. Org. Chem. 2005; 70: 10030
    • 8d Patel MV, Bell R, Majest S, Henry R, Kolasa T. J. Org. Chem. 2004; 69: 7058
    • 8e Norris T, Colon-Cruz R, Ripin DH. B. Org. Biomol. Chem. 2005; 3: 1844
    • 8f Silva VL. M, Silva AM. S, Pinto DC. G. A, Cavaleiro JA. S, Elguero J. Eur. J. Org. Chem. 2004; 4348
    • 8g Bishop BC, Brands KM. J, Gibb AD, Kennedy DJ. Synthesis 2004; 43
    • 8h Miller RD, Reiser O. J. Heterocycl. Chem. 1993; 30: 755
    • 9a Padwa A In 1,3-Dipolar Cycloaddition Chemistry . Vol. 1. John Wiley & Sons; New York: 1984
    • 9b Padwa A In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Pearson WH. John Wiley & Sons; New York: 2002

      For selected reviews, see:
    • 10a Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
    • 10b Zhang Y, Wang J. Top. Curr. Chem. 2012; 327: 239
    • 10c Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
    • 10d Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 10e Zhang Y, Wang J. Eur. J. Org. Chem. 2011; 1015
    • 11a Pérez-Aguilar MC, Valdés C. Angew. Chem. Int. Ed. 2013; 52: 7219
    • 11b Wu L.-L, Ge Y.-C, He T, Zhang L, Fu X.-L, Fu H.-Y, Chen H, Li R.-X. Synthesis 2012; 44: 1577
    • 11c Kumar R, Namboothiri IN. N. Org. Lett. 2011; 13: 4016
    • 11d Muruganantham R, Namboothiri I. J. Org. Chem. 2010; 75: 2197
    • 11e Xie J.-W, Wang Z, Yang W.-J, Kong L.-C, Xu D.-C. Org. Biomol. Chem. 2009; 7: 4352
    • 11f Muruganantham R, Mobin SM, Namboothiri IN. N. Org. Lett. 2007; 9: 1125
    • 11g Ivanova OA, Budynina EM, Averina EB, Kuznetsova TS, Grishin YK, Zefirova NS. Synthesis 2007; 2009
    • 11h Jiang N, Li C.-J. Chem. Commun. 2004; 394
    • 11i Aggarwal VK, de Vicente J, Bonnert RV. J. Org. Chem. 2003; 68: 5381
    • 11j Jończyk A, Włostowskab J, Mąkosza M. Tetrahedron 2001; 57: 2827
    • 11k Kano K, Scarpetti D, Warner JC, Anselime J.-P. Can. J. Chem. 1986; 64: 2211
  • 12 Kong Y, Tang M, Wang Y. Org. Lett. 2014; 16: 576
    • 13a Wang W.-L, Feng Y.-L, Gao W.-Q, Luo X, Deng W.-P. RSC Adv. 2013; 3: 1687
    • 13b Padwa A, Kao H. J. Org. Chem. 1980; 45: 3756
    • 13c Wilson RM, Rekers JW, Packard AB, Elder RC. J. Am. Chem. Soc. 1980; 102: 1633
    • 13d Ito S, Tanaka Y, Kakehi A, Fukuyama T, Osawa N, Sayo N. Bull. Chem. Soc. Jpn. 1983; 56: 545
  • 14 Deng X, Mani NS. J. Org. Chem. 2008; 73: 2412
  • 15 Liu P, Xu Q.-Q, Dong C, Lei X, Lin G. Synlett 2012; 23: 2087
  • 16 Leyva A, Corma A. Adv. Synth. Catal. 2009; 351: 2876
    • 17a Tang M, Zhang F.-M. Tetrahedron 2013; 69: 1427
    • 17b Tang M, Zhang W, Kong Y. Org. Biomol. Chem. 2013; 11: 6250
  • 18 Kong Y, Zhang W, Tang M, Wang H. Tetrahedron 2013; 69: 7487