Synthesis 2016; 48(14): 2287-2293
DOI: 10.1055/s-0035-1560438
paper
© Georg Thieme Verlag Stuttgart · New York

Additive-Free Palladium-Catalysed Hydroamination of Piperylene with Morpholine

Peter Neubert
Department of Biochemical and Chemical Engineering, Chair of Technical Chemistry, Technical University Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany   Email: arno.behr@bci.tu-dortmund.de
,
Ines Meier
Department of Biochemical and Chemical Engineering, Chair of Technical Chemistry, Technical University Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany   Email: arno.behr@bci.tu-dortmund.de
,
Tom Gaide
Department of Biochemical and Chemical Engineering, Chair of Technical Chemistry, Technical University Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany   Email: arno.behr@bci.tu-dortmund.de
,
Arno Behr*
Department of Biochemical and Chemical Engineering, Chair of Technical Chemistry, Technical University Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany   Email: arno.behr@bci.tu-dortmund.de
› Author Affiliations
Further Information

Publication History

Received: 14 December 2015

Accepted after revision: 12 February 2016

Publication Date:
15 March 2016 (online)


Abstract

In this contribution, the additive-free hydroamination of piperylene, an easily accessible 1,3-diene from naphtha steamcracking, with morpholine is described. This reaction provides an atom economic access to allylic C5 amines in a single step from commercially available and air-stable precursors and ligands. Detailed investigations revealed (DPPB)Pd(CCl3CO2)2 as the most active catalyst. After a 12-hour reaction period, a total yield of 79% allylic amines was obtained in the presence of 0.3 mol% catalyst. Furthermore, a noteworthy influence of the catalyst counter ion and the substrate concentration was discovered.

 
  • References

  • 1 Behr A, Neubert P. ChemCatChem 2014; 6: 412
  • 2 IEA, Dechema, ICCA, Technology Roadmap Energy and GHG Reductions in the Chemical Industry via Catalytic Processes. Dechema; Frankfurt: 2013
  • 3 Behr A, Neubert P. Applied Homogeneous Catalysis . Wiley-VCH; Weinheim: 2012
  • 4 Hayes KS. Appl. Catal. A 2001; 221: 187
  • 5 Haggin J. Chem. Eng. News 1993; 71 (22) (22) 23
  • 6 Steinborn D, Taube R. Z. Chem. 1986; 26: 349
    • 7a Huang L, Arndt M, Gooßen K, Heydt H, Gooßen LJ. Chem. Rev. 2015; 115: 2596
    • 7b Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
    • 7c Müller TE, Beller M. Chem. Rev. 1998; 98: 675
    • 7d Nobis M, Drießen-Hölscher B. Angew. Chem. Int. Ed. 2001; 40: 3983 ; Angew. Chem. 2001, 113: 4105
    • 7e Hartwig JF. Pure Appl. Chem. 2004; 76: 507
    • 8a Hii KK. Pure Appl. Chem. 2006; 78: 341
    • 8b Hultzsch KC. Org. Biomol. Chem. 2005; 3: 1819
    • 8c Roesky PW, Müller TE. Angew. Chem. Int. Ed. 2003; 42: 2708 ; Angew. Chem. 2003, 115, 2812
    • 8d Aillaud I, Collin J, Hannedouche J, Schulz E. Dalton Trans. 2007; 5105
    • 8e Reznichenko AL, Nawara-Hultzsch AJ, Hultzsch KC. Top. Curr. Chem. 2014; 343: 191
    • 8f Bernoud E, Lepori C, Mellah M, Schulz E, Hannedouche J. Catal. Sci. Technol. 2015; 5: 2017
  • 9 Seayad J, Tillack A, Hartung CG, Beller M. Adv. Synth. Catal. 2002; 344: 795
  • 10 Hong S, Marks TJ. Acc. Chem. Res. 2004; 37: 673
    • 11a Stradiotto M, Hesp KD. ChemCatChem 2010; 2: 1192
    • 11b Gui J, Pan C.-M, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
  • 12 Huehls CB, Lin A, Yang J. Org. Lett. 2014; 16: 3620
    • 13a Sevov CS, Zhou J, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 11960
    • 13b Sevov CS, Zhou J, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 3200
    • 14a Dzhemilev UM, Kunakova RV, Sirazova MM. Russ. Chem. Bull. 1985; 34: 2563
    • 14b Dzhemilev U, Tolstikov G, Khusnutdinov R. Russ. J. Org. Chem. 2009; 45: 957
    • 14c Löber O, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 4366
    • 14d Minami T, Okamoto H, Ikeda S, Tanaka R, Ozawa F, Yoshifuji M. Angew. Chem. Int. Ed. 2001; 40: 4501; Angew. Chem. 2001, 113, 4633
    • 14e Johns AM, Utsunomiya M, Incarvito CD, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 1828
    • 14f Kuchenbeiser G, Shaffer AR, Zingales NC, Beck JF, Schmidt JA. R. J. Organomet. Chem. 2011; 696: 179
    • 14g Jahromi BT, Kharat AN, Zamanian S, Bakhoda A, Mashayekh K, Khazaeli S. Appl. Catal. A. 2012; 433–434: 188
    • 14h Banerjee D, Junge K, Beller M. Angew. Chem. Int. Ed. 2014; 53: 1630 ; Angew. Chem. 2014, 126, 1656
    • 15a Pawlas J, Nakao Y, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 3669
    • 15b Yi CS, Yun SY. Org. Lett. 2005; 7: 2181
    • 15c Qin H, Yamagiwa N, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2006; 128: 1611
    • 15d Taylor JG, Whittall N, Hii KK. Org. Lett. 2006; 8: 3561
  • 16 Behr A, Johnen L, Rentmeister N. Adv. Synth. Catal. 2010; 352: 2062
  • 17 Banerjee D, Junge K, Beller M. Angew. Chem. Int. Ed. 2014; 53: 1630
  • 18 Kiji J, Sasakawa E, Yamamoto K, Furukawa J. J. Organomet. Chem. 1974; 77: 125
  • 19 Takahashi K, Miyake A, Hata G. Bull. Chem. Soc. Jpn. 1972; 45: 1183
    • 20a Giner X, Nájera C. Org. Lett. 2008; 10: 2919
    • 20b Nájera C, Giner X. Synlett 2009; 3211
    • 20c Giner X, Nájera C, Kovács G, Lledós A, Ujaque G. Adv. Synth. Catal. 2011; 353: 3451
    • 20d Brouwer C, He C. Angew. Chem. Int. Ed. 2006; 45: 1744 ; Angew. Chem. 2006, 118, 1776
    • 21a Strukul G, Gavagnin R, Cataldo M, Pinna F. Organometallics 1998; 17: 661
    • 21b Luo H.-K, Kou Y, Wang X.-W, Li D.-G. J. Mol. Catal. A: Chem. 2000; 151: 91
    • 21c McDonagh AM, Cifuentes MP, Lucas NT, Humphrey MG, Houbrechts S, Persoons A. J. Organomet. Chem. 2000; 605: 184
  • 22 Marson A, van Oort AB, Mul WP. Eur. J. Inorg. Chem. 2002; 3028
  • 23 Hansen CM. Hansen Solubility Parameters . CRC Press; Boca Raton: 2007
  • 24 Ward AL, Makin EC. J. Am. Chem. Soc. 1947; 69: 657
  • 25 Behr A, Henze G, Johnen L, Reyer S. J. Mol. Catal. A: Chem. 2008; 287: 95