Synlett 2015; 26(12): 1693-1696
DOI: 10.1055/s-0034-1380216
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 3-Oxazolines via SnCl4-Promoted Formal [3+2] Cycloaddition of Donor–Acceptor Oxiranes and Nitriles

Hai Zhou
a   College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P. R. of China
,
Xiaofei Zeng*
b   College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. of China   Email: zgf@hznu.edu.cn   Email: 20130078@hznu.edu.cn
,
Yan Xie
a   College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P. R. of China
,
Guofu Zhong*
b   College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. of China   Email: zgf@hznu.edu.cn   Email: 20130078@hznu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 20 February 2015

Accepted after revision: 22 April 2015

Publication Date:
01 June 2015 (online)


Abstract

A novel SnCl4-promoted formal [3+2] cycloaddition of donor–acceptor oxiranes and nitriles via chemoselective C–C bond breakage was developed. This reaction provides an efficient and practical method for the preparation of 3-oxazolines in good yields (up to 89%).

Supporting Information

 
  • References and Notes

    • 1a 1,3-Dipolar Cycloaddition Chemistry . Vol. 1. Padwa A. Wiley; New York: 1984
    • 1b 1,3-Dipolar Cycloaddition Chemistry . Vol. 2. Padwa A. Wiley; New York: 1984
    • 1c Huisgen R In Advances in Cycloaddition . Vol. 1. Curran DP. JAI Press; Greenwich: 1988: 1-32
    • 1d Deshong P, Lander SW, Leginus JM. Jr, Dicken CM In Advances in Cycloaddition . Vol. 1. Curran DP. JAI Press; Greenwich: 1988: 87-128
    • 1e Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 1f Kanemasa S. Synlett 2002; 1371
    • 1g The Chemistry of Heterocyclic Compounds: Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Vol. 59. Padwa A, Pearson WH. Wiley and Sons; New York: 2002
    • 1h Topics in Heterocyclic Chemistry: Synthesis of Heterocycles via Cycloadditions I. Vol. 12. Hassner A. Springer; Berlin/Heidelberg: 2008
    • 2a Huisgen R. Angew. Chem., Int. Ed. Engl. 1977; 16: 572 ; and references cited therein
    • 2b Bemaus C, Font J, de March P. Tetrahedron 1991; 47: 7713
    • 2c Wang G.-W, Yang H.-T, Wu P, Miao CB, Xu Y. J. Org. Chem. 2006; 71: 4346
    • 3a Hojo M, Ohkuma M, Ishibashi N, Hosomi A. Tetrahedron Lett. 1993; 34: 5943
    • 3b Hojo M, Aihara H, Suginohara Y, Sakata K, Nakamura S.-Y, Murakami C, Hosomi A. J. Org. Chem. 1997; 62: 8610
    • 4a Shimizu N, Bartlett PD. J. Am. Chem. Soc. 1978; 100: 4260
    • 4b Bekhazi M, Warkentin J. J. Am. Chem. Soc. 1983; 105: 1289
    • 4c Bekhazi M, Risbood PA, Warkentin J. J. Am. Chem. Soc. 1983; 105: 5675
    • 4d Couture P, Terlouw JK, Warkentin J. J. Am. Chem. Soc. 1996; 118: 4214
    • 4e Warkentin J. J. Chem. Soc., Perkin Trans. 1 2000; 2161
    • 5a Gill HS, Landgrebe JA. Tetrahedron Lett. 1982; 23: 5099
    • 5b Gill HS, Landgrebe JA. J. Org. Chem. 1983; 48: 1051
  • 6 Hojo M, Aihara H, Hosomi A. J. Am. Chem. Soc. 1996; 118: 3533
    • 7a De March P, Huisgen R. J. Am. Chem. Soc. 1982; 104: 4952
    • 7b Huisgen R, De March P. J. Am. Chem. Soc. 1982; 104: 4953
    • 7c Doyle MP, Forbes DC, Protopopova MN, Stanley SA, Vasbinder MM, Xavier KR. J. Org. Chem. 1997; 62: 7210
    • 7d Jiang B, Zhang X.-B, Luo Z.-H. Org. Lett. 2002; 4: 2453
    • 7e Mehta G, Muthusamy S. Tetrahedron 2002; 58: 9477
    • 7f Lu C.-Y, Chen Z.-Y, Liu H, Hu WH, Mi A.-Q. J. Org. Chem. 2004; 69: 4856
    • 7g Russell AE, Brekan J, Gronenberg L, Doyle MP. J. Org. Chem. 2004; 69: 5269
    • 7h Suga H, Ebiura Y, Fukushima K, Kakehi A, Baba T. J. Org. Chem. 2005; 70: 10782
    • 7i Padwa A. Helv. Chim. Acta 2005; 88: 1357
    • 7j Torssell S, Somfai P. Adv. Synth. Catal. 2006; 348: 2421
    • 7k Son S, Fu GC. J. Am. Chem. Soc. 2007; 129: 1046
    • 7l DeAngelis A, Talor M, Fox JM. J. Am. Chem. Soc. 2009; 131: 1101
    • 8a Zhang J, Chen Z, Wu H.-H, Zhang J. Chem. Commun. 2012; 48: 1817
    • 8b Chen Z, Tian Z, Zhang J, Ma J, Zhang J. Chem. Eur. J. 2012; 18: 8591
    • 8c Chen Z, Wei L, Zhang J. Org. Lett. 2011; 13: 1170
    • 8d Liu R, Zhang M, Zhang J. Chem. Commun. 2011; 47: 12870
    • 8e Zhang J, Xiao Y, Zhang J. Adv. Synth. Catal. 2013; 355: 2793
    • 9a Yu M, Pantos GD, Sessler JL, Pagenkopf BL. Org. Lett. 2004; 6: 1057
    • 9b Sathishkannan G, Srinivasan K. Org. Lett. 2011; 13: 6002
    • 9c Chagarovskiy AO, Budynina EM, Ivanova OA, Trushkov IV. Chem. Heterocycl. Compd. 2010; 46: 120
  • 10 Cui B, Ren J, Wang Z. J. Org. Chem. 2014; 79: 790
    • 11a Chang SS, Hirai C, Reddy BR, Herz KO, Kato A. Chem. Ind. 1968; 1639
    • 11b Peterson RJ, Izzo HI, Jungermann E, Chang SS. J. Food Sci. 1975; 40: 948
    • 11c Ho C.-T, Lee KN, Jin QZ. J. Agric. Food Chem. 1983; 31: 336
    • 11d Tang J, Jin QZ, Shen G.-H, Ho C.-T, Chang SS. J. Agric. Food Chem. 1983; 31: 1287
    • 11e Ho C.-T, Lee M.-H, Chang SS. J. Food Sci. 1981; 47: 127
    • 11f Maga JA. J. Agric. Food Chem. 1978; 26: 1049
  • 12 Dimethyl 4-Phenyl-2-(p-tolyl)oxazole-5,5(2H)-dicarboxylate (3aa) – Typical Procedure To a mixture of dimethyl-3-p-tolyloxiranyl-2,2-dicarboxylate (1a, 0. 25 g, 1 mmol, 1 equiv) and benzonitrile (2a, 0.52g, 5 mmol, 5 equiv) was added SnCl4 (0.12 mL, 1 mmol, 1 equiv) at 0 °C. The reaction mixture was then stirred at r.t. until the starting materials were consumed as indicated by TLC analysis. The mixture was poured into 50 mL aq sat. NaHCO3 solution and extracted with CH2Cl2 (3 × 25 mL). The combined organic layer was rinsed with H2O, brine, and dried over anhydrous MgSO4. The solvent was evaporated off to get a residue which was then purified by flash chromatography to give pure product 3aa (269 mg, 76%). 1H NMR (500 MHz, CDCl3): δ = 8.11 (d, J = 7.8 Hz, 2 H), 7.54 (t, J = 7.5 Hz, 1 H), 7.46 (t, J = 7.5 Hz, 2 H), 7.19 (d, J = 7.9 Hz, 2 H), 7.11 (d, J = 7.9 Hz, 2 H), 6.15 (s, 1 H), 3.90 (s, 3 H), 3.20 (s, 3 H), 2.31 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 167.6, 166.0, 162.9, 138.2, 133.5, 132.2, 128.9, 128.9, 128.6, 128.0, 126.6, 90.7, 76.6, 53.8, 52.5, 21.3. HRMS: m/z calcd for C20H19NO5 [M + H+]: 354.1336; found: 354.1330.
  • 13 Crystal Structure Analysis for 7 C18H19NO3, Mr = 297.35 g mol–1, monoclinic, space group P121/n1, a = 10.3653 (5), b = 10.0111 (4), c = 14.6662 (6) Å, α = 90.00, β = 93.8990 (10), γ = 90.00, V = 1518.36 (11) Å3, ρ = 1.301 g/cm3, F(000) = 632. X-ray diffraction data were collected on a Nonius Kappa CCD diffractometer at the temperature 296 K using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Structure 7 was solved by direct methods with SIR97 program14 and refined by full-matrix least squares techniques with anisotropic nonhydrogen atoms. Hydrogen atoms were refined in the riding model. The refinement calculations were carried out with the help of SHELX97 program.15 ORTEP16 view of the molecule is shown in the Supporting Information. Crystallographic data for structure 7 have been deposited at the Cambridge Crystallographic Data Centre (CCDC number 1059963. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif).
  • 14 Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AG. G, Spagna R. J. Appl. Crystallogr. 1999; 115
  • 15 Sheldrick GM. SHELXL97, Program for the Refinement of Crystal Structures . University of Göttingen; Germany: 1997
  • 16 Johnson CK. ORTEP-II, Report ORNL-5138 . Oak Ridge National Laboratory; Oak Ridge (TN, USA): 1976