Synlett 2014; 25(17): 2434-2437
DOI: 10.1055/s-0034-1379181
letter
© Georg Thieme Verlag Stuttgart · New York

Diastereoselective Oxidative Cross-Coupling Reactions of Chiral Alkylbenzenes with Arenes and Silyl Nucleophiles

Dominik Nitsch
Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany   Fax: +49(89)28913315   Email: thorsten.bach@ch.tum.de
,
Alexander Pöthig
Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany   Fax: +49(89)28913315   Email: thorsten.bach@ch.tum.de
,
Thorsten Bach*
Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany   Fax: +49(89)28913315   Email: thorsten.bach@ch.tum.de
› Author Affiliations
Further Information

Publication History

Received: 27 August 2014

Accepted: 28 August 2014

Publication Date:
18 September 2014 (online)


Abstract

Chiral di- and trimethoxysubstituted alkylbenzenes underwent oxidative cross-dehydrogenative coupling reactions with arenes and related oxidative coupling reactions with silyl nucleophiles in moderate to good yields (41–99%) and with significant diastereoselectivities (dr = 71:29 to >95:5).

Supporting Information

 
  • References and Notes

  • 2 Review: Samanta R, Matcha K, Antonchick AP. Eur. J. Org. Chem. 2013; 5769

    • Reviews:
    • 3a Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 3b Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 3c Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74

      Selected examples:
    • 4a Xu Y.-C, Roy C, Lebeau E. Tetrahedron Lett. 1993; 34: 8189
    • 4b Xie Y, Yu M, Zhang Y. Synthesis 2011; 2803
    • 4c Ying B.-P, Trogden BG, Kohlman DT, Liang SX, Xu Y.-C. Org. Lett. 2004; 6: 1523
    • 4d Zhang Y, Li C.-J. Angew. Chem. Int. Ed. 2006; 45: 1949
    • 4e Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
    • 4f Tu W, Floreancig PE. Angew. Chem. Int. Ed. 2009; 48: 4567
    • 4g Richter H, Garcia Mancheño O. Eur. J. Org. Chem. 2010; 4460
    • 4h Liu L, Floreancig PE. Angew. Chem. Int. Ed. 2010; 49: 5894
    • 4i Clausen DJ, Floreancig PE. J. Org. Chem. 2012; 77: 6574
    • 4j Meng Z, Sun S, Yuan H, Lou H, Liu L. Angew. Chem. Int. Ed. 2014; 53: 543

      Selected examples:
    • 5a Li Z, Li C.-J. Org. Lett. 2004; 6: 4997
    • 5b Dubs C, Hamashima Y, Sasamoto N, Seidel TM, Suzuki S, Hashizume D, Sodeoka M. J. Org. Chem. 2008; 73: 5859
    • 5c Sud A, Sureshkumar D, Klussmann M. Chem. Commun. 2009; 3169
    • 5d Huang L, Zhang X, Zhang Y. Org. Lett. 2009; 11: 3730
    • 5e Kumaraswamy G, Muthy AN, Pitchaiah A. J. Org. Chem. 2010; 75: 3916
    • 5f Jones KM, Klussmann M. Synlett 2012; 23: 159
    • 5g Zhang J, Tiwari B, Xing C, Chen X, Chi YR. Angew. Chem. Int. Ed. 2012; 51: 3649
    • 5h Alagiri K, Devadig P, Prabhu KR. Chem. Eur. J. 2012; 18: 5160
    • 5i Richter H, Fröhlich R, Daniliuc C.-G, Garcia Mancheño O. Angew. Chem. Int. Ed. 2012; 51: 8656
    • 5j Nobuta T, Tada N, Fujiya A, Kariya A, Miura T. Org. Lett. 2013; 15: 574
    • 5k Zhang G, Ma Y, Wang S, Kong W, Wang R. Chem. Sci. 2013; 4: 2645

      Selected examples:
    • 6a Kolodziej H, Ferreira D, Roux DG. J. Chem. Soc., Perkin Trans. 1 1984; 343
    • 6b Nishino H, Kamachi H, Baba H, Kurosawa K. J. Org. Chem. 1992; 57: 3551
    • 6c Ohmori K, Ushimaru N, Suzuki K. Tetrahedron Lett. 2002; 43: 7753
    • 6d Selenski C, Pettus TR. R. Tetrahedron 2006; 62: 5298
    • 6e Mo H, Bao W. Adv. Synth. Catal. 2009; 351: 2845
    • 6f Li Y.-Z, Li B.-J, Lu X.-Y, Lin S, Shi Z.-J. Angew. Chem. Int. Ed. 2009; 48: 3817
    • 6g Benfatti F, Capdevila MG, Zoli L, Benedetto E, Cozzi PG. Chem. Commun. 2009; 5919
    • 6h Pintér Á, Sud A, Sureshkumar D, Klussmann M. Angew. Chem. Int. Ed. 2010; 49: 5004
    • 6i Guo C, Song J, Luo S.-W, Gong L.-Z. Angew. Chem. Int. Ed. 2010; 49: 5558
  • 7 For examples of enantioselective approaches in CDC reactions, see ref. 4j for onium ion intermediates, refs. 5a–c,g,k for iminium ion intermediates and refs. 6g,i for benzylic cations.
    • 8a Mühlthau F, Schuster O, Bach T. J. Am. Chem. Soc. 2005; 127: 9348
    • 8b Mühlthau F, Stadler D, Goeppert A, Olah GA, Prakash GK. S, Bach T. J. Am. Chem. Soc. 2006; 128: 9668
    • 8c Stadler D, Bach T. Chem. Asian J. 2008; 3: 272
    • 8d Stadler D, Goeppert A, Rasul G, Olah GA, Prakash GK. S, Bach T. J. Org. Chem. 2009; 74: 312
    • 9a Herrmann P, Bach T. Chem. Soc. Rev. 2011; 40: 2022
    • 9b Nörder A, Warren SE, Herdtweck E, Huber SM, Bach T. J. Am. Chem. Soc. 2012; 134: 13524
  • 10 For the preparation of starting materials, see the Supporting Informaton. All chiral compounds in this manuscript were used or obtained as racemic mixtures. The relative configuration of racemates is displayed by straight bonds (bold or hashed), following a convention suggested previously: Maehr H. J. Chem. Ed. 1985; 62: 114

    • For additional examples for FeCl2-catalyzed benzylic DDQ oxidation, see refs. 4b,6f and:
    • 11a Qin C, Jiao N. J. Am. Chem. Soc. 2010; 132: 15893
    • 11b Qin C, Zhou W, Chen F, Ou Y, Jiao N. Angew. Chem. Int. Ed. 2011; 50: 12595
    • 11c Wang T, Zhou W, Yin H, Ma J.-A, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 10823
  • 12 General Experimental Procedure for FeCl2-Catalyzed, DDQ-Mediated Cross-Coupling Reactions To a solution of the substrate 3 (200 μmol, 1.00 equiv), nucleophile (800 μmol, 4.00 equiv), FeCl2 (40 μmol, 0.20 equiv), and MeNO2 (c 100 mM) in a flame-dried flask was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (260 μmol, 1.30 equiv) at r.t. After 1 h the solvent was removed under reduced pressure, and the crude mixture was purified by flash column chromatography (silica gel; pentane–EtOAc, 40:1) to afford the product.
  • 13 General Experimental Procedure for DDQ-Mediated Cross-Coupling Reactions To a solution of the substrate 5 (200 μmol, 1.00 equiv), nucleophile (800 μmol, 4.00 equiv), and MeNO2 (c 100 mM) in a flame-dried flask was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (260 μmol, 1.30 equiv) at r.t. After 1 h the solvent was removed under reduced pressure, and the crude mixture was purified by flash column chromatography (silica gel; pentane–EtOAc, 40:1) to afford the product.
  • 14 Crystal Structure of 6f Colorless plates, C24H34O5, crystal dimensions 0.12 × 0.13 × 0.13 mm; M r = 402.51; monoclinic, space group P 21/n, a = 13.558(3), b = 11.365(2), c = 15.410(3) Å, β = 112.740(6)°, V = 2189.9(7) Å3, Z = 4, λ(Mo Kα) = 0.71073 Å, μ = 0.084 mm–1, ρ calcd = 1.221 g cm–3, T = 123(2) K, F (000) = 872, angle range θ = 1.70–23.26°; collected data: 16558; independent data [I o > 2σ(I o)/all data/R int]: 1913/3089/0.1067; data/restraints/parameter: 3089/0/272; R1 [I o > 2σ(I o)/all data]: 0.0816/0.1330; wR2 [I o > 2σ(I o)/ all data]: 0.1855/0.2073; GOF = 1.049; Δρ max/min: 0.861/–0.271 eÅ–3. CCDC-1016616. For more details, see the Supporting Information.

    • For mechanistic studies towards the benzylic DDQ oxidation, see:
    • 15a Foster R, Horman I. J. Chem. Soc. B 1966; 1049
    • 15b Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
    • 15c Becker H.-D. J. Org. Chem. 1969; 34: 1203
    • 15d Cardillo G, Cricchio R, Merlini L. Tetrahedron 1971; 27: 1875

      Reviews:
    • 16a Johnson F. Chem. Rev. 1968; 68: 375
    • 16b Hoffmann RW. Chem. Rev. 1989; 89: 1841
    • 17a Chung JY. L, Mancheno D, Dormer PG, Variankaval N, Ball RG, Tsou NN. Org. Lett. 2008; 10: 3037
    • 17b Stadler D, Bach T. Angew. Chem. Int. Ed. 2008; 47: 7557
    • 17c Zhang Z, Shi M. Chem. Eur. J. 2010; 16: 7725
    • 17d Wilcke D, Herdtweck E, Bach T. Chem. Asian J. 2012; 7: 1372
    • 17e Corbett MT, Uraguchi D, Ooi T, Johnson JS. Angew. Chem. Int. Ed. 2012; 51: 4685
    • 17f Wilcke D, Bach T. Org. Biomol. Chem. 2012; 10: 6498
    • 17g Chenárd E, Hanessian S. Org. Lett. 2014; 16: 2668