Klin Monbl Augenheilkd 2012; 229(3): 215-220
DOI: 10.1055/s-0031-1281964
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Über die Klärung pathopysiologischer Ursachen genetisch bedingter Erkrankungen

An Analysis of the Pathophysiology of Inherited Diseases
O. Strauß
Further Information

Publication History

25 October 2011

11 November 2011

Publication Date:
21 December 2011 (online)

Zusammenfassung

Evidenzbasierte Augenheilkunde fußt auf der Kenntnis pathophysiologischer Mechanismen auf molekularer Ebene. Ein Beispiel hierfür ist die anti-VEGF-Therapie zur Behandlung der feuchten Form der altersabhängigen Makuladegeneration. Ihr therapeutischer Erfolg basiert auf der Neutralisation einer Sorte von Molekül, dem VEGF-A. Die Untersuchung der Ursachenkette genetisch bedingter Erkrankungen bietet die besondere Gelegenheit, Krankheitsprozesse auf molekularer Ebene zu klären und molekular genaue Therapien zu entwickeln. Vom identifizierten Gen erfolgt die Analyse des Genprodukts und seiner Mutanten-Formen, wobei Tiermodelle als auch isolierte Moleküle im Expressionssystem untersucht werden. Somit kommt der Untersuchung der Pathomechanismen eine besondere Rolle zu. Mit diesem Artikel soll eine Orientierung über dieses Gebiet gegeben werden, über seine Methoden und grundlegende Pathomechanismen. Des Weiteren soll anhand von Beispielen gezeigt werden, wie die Analyse der Pathomechanismen genetisch bedingter Erkrankungen zum Verständnis erworbener Erkrankungen und zu neuen Therapieansätzen geführt hat.

Abstract

Evidence-based ophthalmology relies on a knowledge of the pathophysiological mechanisms at the molecular level. An example is the anti-VEGF therapy to treat the wet form of age-related macular degeneration. Its therapeutic effect is due to the neutralisation of a single type of molecule, the VEGF-A. The analysis of pathophysiological mechanisms of inherited diseases represents a unique opportunity to develop precise molecular therapeutic approaches. This analysis begins with the identification of the responsible gene which is followed by investigation of the function of its gene product along with the mutation-dependent changes using animal models and investigation of single molecules in expression systems. In this process the investigation of the pathomechanisms plays a central role. This review provides an orientation about studies on the pathophysiology of inherited diseases with a description of its methods and basic pathomechanisms. Furthermore, examples will be given on how the analysis of inherited retinal diseases has led to an understanding of the pathomechanisms of acquired diseases such as age-dependent macular degeneration and to the development of new therapeutic approaches.

 
  • Literatur

  • 1 Besch D, Jagle H, Scholl HP et al. Inherited multifocal RPE-diseases: mechanisms for local dysfunction in global retinoid cycle gene defects. Vision Res 2003; 43: 3095-3108
  • 2 Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 2005; 80: 595-606
  • 3 Thompson DA, Gal A. Vitamin A metabolism in the retinal pigment epithelium: genes, mutations, and diseases. Prog Retin Eye Res 2003; 22: 683-703
  • 4 Zipfel PF, Lauer N, Skerka C. The role of complement in AMD. Adv Exp Med Biol 2010; 703: 9-24
  • 5 Shan G. RNA interference as a gene knockdown technique. Int J Biochem Cell Biol 2010; 42: 1243-1251
  • 6 Gallenberger M, Meinel DM, Kroeber M et al. Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro. Hum Mol Genet 2011; 20: 422-435
  • 7 Feil R. Conditional somatic mutagenesis in the mouse using site-specific recombinases. Handb Exp Pharmacol 2007; 178: 3-28
  • 8 Tolmachova T, Anders R, Abrink M et al. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. J Clin Invest 2006; 116: 386-394
  • 9 Rogan MP, Stoltz DA, Hornick DB. Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment. Chest 2011; 139: 1480-1490
  • 10 Sanchez-Ruiz JM. Protein kinetic stability. Biophys Chem 2010; 148: 1-15
  • 11 Tsybovsky Y, Molday RS, Palczewski K. The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease. Adv Exp Med Biol 2011; 703: 105-125
  • 12 Milenkovic VM, Rohrl E, Weber BH et al. Disease-associated missense mutations in bestrophin-1 affect cellular trafficking and anion conductance. J Cell Sci 2011; 124: 2988-2996
  • 13 Bradley DT, Zipfel PF, Hughes AE. Complement in age-related macular degeneration: a focus on function. Eye 2011; 25: 683-693
  • 14 Charbel Issa P, Chong NV, Scholl HP. The significance of the complement system for the pathogenesis of age-related macular degeneration – current evidence and translation into clinical application. Graefes Arch Clin Exp Ophthalmol 2011; 249: 163-174
  • 15 Hageman GS, Luthert PJ, Victor Chong NH et al. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 2001; 20: 705-732
  • 16 Lauer N, Mihlan M, Hartmann A et al. Complement regulation at necrotic cell lesions is impaired by the age-related macular degeneration-associated factor-h his402 risk variant. J Immunol 2011; 187: 4374-4383
  • 17 Skerka C, Lauer N, Weinberger AA et al. Defective complement control of factor H (Y402H) and FHL-1 in age-related macular degeneration. Mol Immunol 2007; 44: 3398-3406
  • 18 Cai X, Conley SM, Naash MI. RPE65: role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet 2009; 30: 57-62
  • 19 Jin M, Li S, Moghrabi WN et al. Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 2005; 122: 449-459
  • 20 Xue L, Gollapalli DR, Maiti P et al. A palmitoylation switch mechanism in the regulation of the visual cycle. Cell 2004; 117: 761-771
  • 21 Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005; 85: 845-881
  • 22 Strauss O. The role of retinal pigment epithelium in visual functions. Ophthalmologe 2009; 106: 299-304
  • 23 Redmond TM. Focus on Molecules: RPE65, the visual cycle retinol isomerase. Exp Eye Res 2009; 88: 846-847
  • 24 Allikmets R. Leber congenital amaurosis: a genetic paradigm. Ophthalmic Genet 2004; 25: 67-79
  • 25 Acland GM, Aguirre GD, Bennett J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12: 1072-1082
  • 26 Acland GM, Aguirre GD, Ray J et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92-95
  • 27 Stahl A, Smith LE. An eye for discovery. J Clin Invest 2010; 120: 3008-3011
  • 28 Ashtari M, Cyckowski LL, Monroe JF et al. The human visual cortex responds to gene therapy-mediated recovery of retinal function. J Clin Invest 2011; 121: 2160-2168
  • 29 Bainbridge JW, Smith AJ, Barker SS et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 2008; 358: 2231-2239
  • 30 Kim SR, Jang YP, Jockusch S et al. The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc Natl Acad Sci U S A 2007; 104: 19273-19278
  • 31 Maguire AM, Simonelli F, Pierce EA et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 2008; 358: 2240-2248
  • 32 Boulton M, Dayhaw-Barker P. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 2001; 15: 384-389
  • 33 Boulton M, Docchio F, Dayhaw-Barker P et al. Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vision Res 1990; 30: 1291-1303
  • 34 Boulton ME. Lipofuscin phototoxicity: reality or myth?. J Cataract Refract Surg 2009; 35: 1479; author reply 1479-1480
  • 35 Delori FC, Goger DG, Dorey CK. Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci 2001; 42: 1855-1866
  • 36 Delori FC, Staurenghi G, Arend O et al. In vivo measurement of lipofuscin in Stargardt’s disease--Fundus flavimaculatus. Invest Ophthalmol Vis Sci 1995; 36: 2327-2331
  • 37 Radu RA, Mata NL, Nusinowitz S et al. Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Natl Acad Sci U S A 2003; 100: 4742-4747
  • 38 Sparrow JR, Fishkin N, Zhou J et al. A2E, a byproduct of the visual cycle. Vision Res 2003; 43: 2983-2990
  • 39 Wolf G. Lipofuscin and macular degeneration. Nutr Rev 2003; 61: 342-346
  • 40 Bergmann M, Schutt F, Holz FG et al. Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J 2004; 18: 562-564
  • 41 Docchio F, Boulton M, Cubeddu R et al. Age-related changes in the fluorescence of melanin and lipofuscin granules of the retinal pigment epithelium: a time-resolved fluorescence spectroscopy study. Photochem Photobiol 1991; 54: 247-253
  • 42 Finnemann SC, Leung LW, Rodriguez-Boulan E. The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc Natl Acad Sci U S A 2002; 99: 3842-3847
  • 43 Katz ML. Potential role of retinal pigment epithelial lipofuscin accumulation in age-related macular degeneration. Arch Gerontol Geriatr 2002; 34: 359-370
  • 44 Lakkaraju A, Finnemann SC, Rodriguez-Boulan E. The lipofuscin fluorophore A2E perturbs cholesterol metabolism in retinal pigment epithelial cells. Proc Natl Acad Sci U S A 2007; 104: 11026-11031
  • 45 Schutt F, Davies S, Kopitz J et al. Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 2000; 41: 2303-2308
  • 46 Wassell J, Davies S, Bardsley W et al. The photoreactivity of the retinal age pigment lipofuscin. J Biol Chem 1999; 274: 23828-23832
  • 47 Fleckenstein M, Schmitz-Valckenberg S, Adrion C et al. Progression of age-related geographic atrophy: role of the fellow eye. Invest Ophthalmol Vis Sci 2011; 52: 6552-6557
  • 48 Gobel AP, Fleckenstein M, Schmitz-Valckenberg S et al. Imaging Geographic Atrophy in Age-Related Macular Degeneration. Ophthalmologica 2011;
  • 49 Schmitz-Valckenberg S, Brinkmann CK, Alten F et al. Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 2011; 52: 7640-7646