Synlett 2011(1): 52-56  
DOI: 10.1055/s-0030-1259102
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

One-Pot Synthesis of Oxacalixarene Derivatives with Tunable Cavity Size Using Miscellaneous Linkers

Yanping Zhu, Jingjing Yuan, Yitao Li, Meng Gao, Liping Cao, Jiaoyang Ding, Anxin Wu*
Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China
Fax: +86(027)67867773; e-Mail: chwuax@mail.ccnu.edu.cn;
Further Information

Publication History

Received 28 October 2010
Publication Date:
10 December 2010 (online)

Abstract

Five oxacalixarene derivatives with different linkers including fluorescent units, soft donor atoms, and hydrogen-bond acceptors have been prepared via one-pot approach. Crystal structure reveals that oxacalixarene adopts a classical 1,3-alternate conformation. In contrast, the oxacalixarene adopts a cavity-like conformation. The inner cavity size is up to 13.357 Å and guest molecules, such as chloroform, are included in its solid state.

    References and Notes

  • 1a Gutsche CD. Dhawan B. No KH. Muthukrishnan R. J. Am. Chem. Soc.  1981,  103:  3782 
  • 1b Gutsche CD. Calixarenes   RSC; Cambridge: 1989. 
  • 1c Gutsche CD. Calixarenes Revisited   RSC; Cambridge: 1998. 
  • 2a Calixarenes in Action   Mandolini L. Ungaro R. Imperial College Press; London: 2000. 
  • 2b Calixarenes 2001   Asfari Z. Böhmer V. Harrowfield J. Vicens J. Saadioui M. Kluwer Academic Publishers; Dordrecht: 2001. 
  • 2c Lumetta GJ. Rogers RD. Gopalan AS. Calixarenes for Separation   American Chemical Society; Washington DC: 2000. 
  • 2d Tsukano C. Siegel DR. Danishefsky SJ. Angew. Chem. Int. Ed.  2007,  46:  8840 
  • 3a Supramolecular Chemistry of Anions   Bianchi A. Bowman-James K. García-España E. Wiley-VCH; New York: 1997. 
  • 3b Schmidtchen FP. Berger M. Chem. Rev.  1997,  97:  1609 
  • 3c Mohammad RG. Parviz N. Morteza R. Farnoush F. Mohammad RP. Sensor  2006,  6:  1018 
  • 3d Quiocho FA. Kidney Int.  1996,  49:  943 
  • 3e Bell TW. Hext NM. Chem. Soc. Rev.  2004,  33:  589 
  • 4a König B. Fonseca MH. Eur. J. Inorg. Chem.  2000,  2303 
  • 4b Wang M.-X. Chem. Commun.  2008,  4541 
  • 4c Maes W. Dehaen W. Chem. Soc. Rev.  2008,  37:  2393 
  • Some recent examples:
  • 5a Graubaum H. Lutze G. Costisella B. J. Prakt. Chem./Chem.-Ztg.  1997,  339:  266 
  • 5b Graubaum H. Lutze G. Costisella B. Linden B.
    J. Prakt. Chem./Chem.-Ztg.  1997,  339:  672 
  • 5c Ito A. Ono Y. Tanaka K. Angew. Chem. Int. Ed.  2000,  112:  1114 
  • 5d Ito A. Ono Y. Tanaka K. Angew. Chem. Int. Ed.  2000,  39:  1072 
  • 5e Fukushima W. Kanbara T. Yamamoto T. Synlett  2005,  2931 
  • 5f Suzuki Y. Yanagi T. Kanbara T. Yamamoto T. Synlett  2005,  263 
  • 5g Wang M.-X. Zhang X.-H. Zheng Q.-Y. Angew. Chem. Int. Ed.  2004,  43:  838 
  • 5h Yao B. Wang D.-X. Gong H.-Y. Huang Z.-T. Wang M.-X. J. Org. Chem.  2009,  74:  5361 
  • 5i Yao B. Wang D.-X. Huang Z.-T. Wang M.-X. Chem. Commun.  2009,  2899 
  • 5j Zhang E.-X. Wang D.-X. Huang Z.-T. Wang M.-X. J. Org. Chem.  2009,  74:  8595 
  • 5k Wang L.-X. Wang D.-X. Huang Z.-T. Wang M.-X. J. Org. Chem.  2010,  75:  741 
  • 5l Touil M. Lachkar M. Siri O. Tetrahedron Lett.  2008,  49:  7250 
  • 5m Haddoub R. Touil M. Raimundo J. M . Siri O. Org. Lett.  2010,  12:  2722 
  • 5n Konishi H. Hashimoto S. Sakakibara T. Matsubara S. Yasukawa Y. Morikawa O. Kobayashi K. Tetrahedron Lett.  2009,  50:  620 
  • 5o Yasukawa Y. Kobayashi K. Konishi H. Tetrahedron Lett.  2009,  50:  5130 
  • 5p Xue M. Chen C.-F. Org. Lett.  2009,  1:  5294 
  • 5q Katz JL. Tschaen B. A. Org. Lett.  2010,  12:  4300 ; and other references cited therein
  • Some recent examples:
  • 6a Chambers RD. Khalil A. Richmond P. Sandford G. Yufit DS. Howard JAK. J. Fluorine Chem.  2004,  125:  715 
  • 6b Chambers RD. Khalil A. Murray CB. Sandford G. Batsanov A. Howard JAK. J. Fluorine Chem.  2005,  126:  1002 
  • 6c Li XH. Upton TG. Gibb CLD. Gibb BC. J. Am. Chem. Soc.  2003,  125:  650 
  • 6d Wang M.-X. Yang H.-B. J. Am. Chem. Soc.  2004,  126:  15412 
  • 6e Chen Y. Wang D.-X. Huang Z.-T. Wang M.-X. J. Org. Chem.  2010,  75:  3786 
  • 6f Katz JL. Geller BJ. Foster PD. Chem. Commun.  2007,  1026 
  • 6g Wackerly JW. Meyer JM. Crannell WC. King SB. Katz JL. Macrocycles  2009,  42:  8181 
  • 6h Van Rossom W. Maes W. Kishore L. Ovaere M. Van Meervel L. Dehaen W. Org. Lett.  2008,  10:  585 
  • 6i Van Rossom W. Ovaere M. Van Meervel L. Dehaen W. Maes W. Org. Lett.  2009,  11:  1861 
  • 6j Van Rossom W. Kishore L. Robeyns K. Van Meervel L. Dehaen W. Maes W. Eur. J. Org. Chem.  2010,  4122 
  • 6k Ma M.-L. Li X.-Y. Wen K. J. Am. Chem. Soc.  2009,  131:  8338 
  • 6l Hu S.-Z. Chen C.-F. Chem. Commun.  2010,  46:  4199  ; and other references cited therein
  • 7a Montaudo G. Bottino F. Trivellone E. J. Org. Chem.  1972,  37:  504 
  • 7b Kumagai H. Hasegawa M. Miyanari S. Sugawa Y. Sato Y. Hori T. Ueda S. Kamiyama H. Miyano S. Tetrahedron Lett.  1997,  38:  3971 
  • 7c Freund T. Kubel C. Baumgarten M. Enkelmann V. Gherghel L. Reuter R. Müllen K. Eur. J. Org. Chem.  1998,  555 
  • 7d Iki H. Kabuto C. Fukushima T. Kumagai H. Takeya H. Miyanari S. Miyashi T. Miyano S. Tetrahedron  2000,  56:  1437 
  • 7e Lhotak P. Eur. J. Org. Chem.  2004,  1675 
  • 7f Stoikov II. Yushkov EA. Zharoc I. Antipin I. Konovalov AI. Tetrahedron Lett.  2009,  65:  7109 
  • 8a Kauffmann T. Kniese HH. Tetrahedron Lett.  1973,  41:  4043 
  • 8b König B. Rödel M. Bubenitschek P. Jones PG. Angew. Chem., Int. Ed. Engl.  1995,  34:  661 ; Angew. Chem. 1995, 107, 752
  • 8c König B. Rödel M. Bubenitschek P. Jones PG. Thondorf I. J. Org. Chem.  1995,  60:  7406 
  • 8d Yoshida M. Goto M. Nakanishi F. Organometallics  1999,  18:  1465 
  • 9a Masci B. Finelli M. Varrone M. Chem. Eur. J.  1998,  4:  2018 
  • 9b Darbost U. Sénèque O. Li Y. Bertho G. Marrot J. Rager M.-N. Reinaud O. Jabin I. Chem. Eur. J.  2007,  13:  2078 
  • 9c Zhang C. Chen C.-F. J. Org. Chem.  2007,  72:  3880 
  • 10a Ma M.-L. Wang H.-X. Li X.-Y. Liu L.-Q. Jin H.-S. Wen K. Tetrahedron  2009,  65:  300 
  • 10b Li M. Ma M.-L. Li X.-Y. Wen K. Tetrahedron  2009,  65:  4639 
  • 13a

    Crystal structure data for compound 1a: CCDC 779459.
    C38H30Cl8N6O4, chemical formula weight: 575.59, monoclinic space group Pmmn, a = 11.4790 (1), b = 12.2555 (1), c = 8.2846 (9) Å; α = 90.000˚, β = 90.000˚, γ = 90.000˚, U = 1165.5 (2) ų, T = 298 (2) K, Z = 2, DC = 1.640 mg/m³, µ = 0.665 mm, λ = 0.71073 Å, F(000) 578, crystal size 0.16 × 0.15 × 0.10 mm³, 1128 independent reflections [R(int) = 0.0555], reflections collected 5897, refinement method: full-matrix least-squares on F²: goodness-of-fit on F² 1.053, final R indices [I > 2σ(I)], R1 = 0.0631, wR2 = 0.1846, largest diff. peak and hole 0.515 Å and -0.665 e . Å.

  • 13b

    Crystal structure data for macrocycle 6a: CCDC 778338.

11

The solvent molecules (CHCl3) are hydrogen-bond donors, and the two O1 atoms of compound 1a are hydrogen-bond acceptors. The distance of H6˙˙˙O1 is 2.669 Å, and the C6-H6˙˙˙O1 bond angel is 135.380˚.

12

Representative Procedure
To a solution of DIPEA (2.5 equiv) in THF, catechol 1 (1 equiv), and cyanuric chloride (1 equiv) were separately, but simultaneously, added slowly in THF using the high-dilution method. The resulting mixture was then stirred several hours (TLC monitoring). After that, the solvent was removed under reduce pressure, and added H2O (50 mL) to the residue, then extracted with EtOAc (3 × 50 mL). The organic phase was dried by anhyd Na2SO4, and removed the EtOAc under reduce pressure. The final residue was purified by column chromatography on silica gel (PE-EtOAc) to afford the expected oxacalixarenes 1a in 30% yield.
Compound 1a: white solids (30%); mp >300 ˚C. IR (KBr): 3443, 1554, 1493, 1454, 1430, 1379, 1299, 1232, 1211, 1167, 1102, 1080, 986, 954 cm. ¹H NMR (600 MHz, CDCl3): δ = 7.00-7.04 (m, 4 H), 7.13-7.16 (m, 4 H). ¹³C NMR (150 MHz, CDCl3): δ = 174.6, 171.6, 143.1, 127.5, 123.4. ESI-HRMS: m/z [M + Na]+ calcd for C18H8N6NaO4Cl2: 464.9876; found: 464.9871.

14

C38H30Cl8N6O4, chemical formula weight: 918.28, monoclinic, space group P2 (1)/n, a = 20.306 (3), b = 10.1760, c = 20.828 (3) Å; α = 90.000˚, β = 104.112 (2)˚, γ = 90.00˚, U = 4173.9 (9) ų, T = 200(2) K, Z = 4, DC = 1.461 Mg/M³, µ = 0.587 mm, λ = 0.71073 Å, F(000) 1872.00, crystal size 0.26 × 0.20 × 0.15 mm³, 7333 independent reflections [R(int) = 0.0585], reflections collected 32813, refinement method: full-matrix least-squares on F²: goodness-of-fit on F² 1.178, final R indices
[I > 2σ(I)], R1 = 0.0896, wR2 = 0.1908, largest diff. peak and hole 0.753 Å and -0.524 e . Å.