Synlett 2010(16): 2518-2522  
DOI: 10.1055/s-0030-1258545
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Recyclable NHC-Ni Complex Immobilized on Magnetite/Silica Nanoparticles for C-S Cross-Coupling of Aryl Halides with Thiols

Hyo-Jin Yoona, Jung-Woo Choia, Homan Kangb, Taegyu Kanga, Sang-Myung Leea, Bong-Hyun Jun*c, Yoon-Sik Lee*a,b
a School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
b Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul, 151-747, Korea
c Department of Electrical Engineering, Seoul National University, Seoul 151-744, Korea
Fax: +82(2)8769625; e-Mail: yslee@snu.ac.kr;
Further Information

Publication History

Received 30 June 2010
Publication Date:
26 August 2010 (online)

Abstract

A new type of magnetite/silica nanoparticle-supported N-heterocyclic carbene nickel catalyst (Mag-NHC-Ni) was developed from imidazolium with N-picolyl moieties and used as an efficient catalyst in the C-S coupling of various aryl halides with thiols. Moreover, the catalyst was easily recovered from the reaction mixture by simple filtration and recycled with almost consistent activity.

    References and Notes

  • 1a Amorati R. Fumo MG. Menichetti S. Mugnaini V. Pedulli G. J. Org. Chem.  2006,  71:  6325 
  • 1b Bonnet B. Soullez D. Girault S. Maes L. Landry V. Davioud-Charvet E. Sergheraert C. Bioorg. Med. Chem.  2000,  8:  95 
  • 1c Liu G. Link JT. Pei Z. Reilly E. Leitza S. Nguyen B. Marsh KC. Okasinski GF. von Geldern TW. Ormes M. Fowler K. Gallatin M. J. Med. Chem.  2000,  43:  4025 
  • 1d Liu L. Stelmach JE. Natarajan SR. Chen M. Singh SB. Schwartz CD. Fitzgerald CE. O’Keefe SJ. Zaller DM. Schmatz DM. Doherty JB. Bioorg. Med. Chem. Lett.  2003,  13:  3979 
  • 2a Wang Y. Chackalamannil S. Chang W. Greenlee W. Ruperto V. Duffy RA. McQuade R. Lachowicz JE. Bioorg. Med. Chem. Lett.  2001,  11:  891 
  • 2b Liu G. Huth JR. Olejniczak ET. Mendoza R. DeVries P. Leitza S. Reilly EB. Okasinski GF. Fesik SW. von Geldern TW. J. Med. Chem.  2001,  44:  1202 
  • 3a De Martino G. La Regina G. Coluccia A. Edler MC. Barbera MC. Brancale A. Wilcox E. Hamel E. Artico M. Silvestri R. J. Med. Chem.  2004,  47:  6120 
  • 3b De Martino G. Edler MC. La Regina G. Coluccia A. Barbera MC. Barrow D. Nicholson RI. Chiosis G. Brancale A. Hamel E. Artico M. Silvestri R. J. Med. Chem.  2006,  49:  947 
  • 4 Kaldor SW. Kalish VJ. Davies JF. Shetty BV. Fritz JE. Appelt K. Burgess JA. Campanale KM. Chirgadze NY. Clawson DK. Dressman BA. Hatch SD. Khalil DA. Kosa MB. Lubbehusen PP. Muesing MA. Patick AK. Reich SH. Su KS. Tatlock JH. J. Med. Chem.  1997,  40:  3979 
  • 5 Kondo T. Mitsudo T. Chem. Rev.  2000,  100:  3205 
  • 6a Mann G. Baranano D. Hartwig JF. Rheingold AL. Guzei IA. J. Am. Chem. Soc.  1998,  120:  9205 
  • 6b Li GY. Angew. Chem. Int. Ed.  2001,  40:  1513 
  • 6c Schopfer U. Schlapbach A. Tetrahedron  2001,  57:  3069 
  • 6d Itoh T. Mase T. Org. Lett.  2004,  6:  4587 
  • 6e Mispelaere-Canivet C. Spindler J. Perrio S. Beslin P. Tetrahedron  2005,  61:  5253 
  • 6f Moreau X. Campagne JM. Meyer G. Jutand A. Eur. J. Org. Chem.  2005,  17:  3749 
  • 6g Fernández-Rodríguez MA. Shen Q. Hartwig JF. J. Am. Chem. Soc.  2006,  128:  2180 
  • 7a Kwong FY. Buchwald SL. Org. Lett.  2002,  4:  3517 
  • 7b Bates CG. Gujadhur RK. Venkataraman D. Org. Lett.  2002,  4:  2803 
  • 7c Wu Y. He H. Synlett  2003,  1789 
  • 7d Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 7e Deng W. Zou Y. Wang Y. Liu L. Guo Q. Synlett  2004,  1254 
  • 7f Rout L. Sen TK. Punniyamurthy T. Angew. Chem. Int. Ed.  2007,  46:  5583 
  • 7g Rout L. Saha P. Jammi S. Punniyamurthy T. Eur. J. Org. Chem.  2008,  640 
  • 7h Xu H. Zhao X. Fu Y. Feng Y. Synlett  2008,  3063 
  • 7i Bhadra S. Sreedhar B. Ranu BC. Adv. Synth. Catal.  2009,  351:  2369 
  • 7j Gonzalez-Arellano C. Luque R. Macquarrie DJ. Chem. Commun.  2009,  1410 
  • 8a Takagi K. Chem. Lett.  1987,  16:  2221 
  • 8b Percec V. Bae J. Hill DH. J. Org. Chem.  1995,  60:  6895 
  • 8c Baldovino-Pantaleón O. Hernández-Ortega S. Morales-Morales D. Adv. Synth. Catal.  2006,  348:  236 
  • 8d Jammi S. Barua P. Rout L. Saha P. Punniyamurthy T. Tetrahedron Lett.  2008,  49:  1484 
  • 9 Wong Y. Jayanth TT. Cheng C. Org. Lett.  2006,  8:  5613 
  • 10a Correa A. Carril M. Bolm C. Angew. Chem. Int. Ed.  2008,  47:  2880 
  • 10b Akkilagunta VK. Reddy VP. Rao KR. Synlett  2010,  1260 
  • 11a Reddy VP. Kumar AV. Swapna K. Rao KR. Org. Lett.  2009,  11:  1697 
  • 11b Reddy VP. Swapna K. Kumar AV. Rao KR. J. Org. Chem.  2009,  74:  3189 
  • 12 Murthy SN. Madhav B. Reddy VP. Nageswar YVD. Eur. J. Org. Chem.  2009,  5902 
  • 13a Byun J. Lee Y. Tetrahedron Lett.  2004,  45:  1837 
  • 13b Kim J. Jun B. Byun J. Lee Y. Tetrahedron Lett.  2004,  45:  5827 
  • 13c Kim J. Kim J. Shokouhimehr M. Lee Y. J. Org. Chem.  2005,  70:  6714 
  • 13d Shokouhimehr M. Kim J. Lee Y. Synlett  2006,  618 
  • 13e Kim J. Kim J. Lee D. Lee Y. Tetrahedron Lett.  2006,  47:  4745 
  • 13f Lee S. Yoon H. Kim J. Chung W. Lee Y. Pure Appl. Chem.  2007,  79:  1553 
  • 13g Kim J. Lee D. Jun B. Lee Y. Tetrahedron Lett.  2007,  48:  7079 
  • 13h Lee D. Kim J. Jun B. Kang H. Park J. Lee Y. Org. Lett.  2008,  10:  1609 
  • 13i Jun B. Kim J. Park J. Kang H. Lee S. Lee Y. Synlett  2008,  2313 
  • 13j Yoon H. Lee S. Kim J. Cho H. Choi J. Lee S. Lee Y. Tetrahedron Lett.  2008,  49:  3165 
  • 13k

    Choi, J.; Yoon, H.; Lee, S.; Kim, J.; Kim, J.; Lee, Y., submitted for publication.

  • 14a Schätz A. Hager M. Reiser O. Adv. Funct. Mater.  2009,  19:  2109 
  • 14b Taher A. Kim J. Jung J. Ahn W. Jin M. Synlett  2009,  2477 
  • 15 Stevens PD. Li G. Fan J. Yen M. Gao Y. Chem. Commun.  2005,  4435 
  • 16a Öfele K. J. Organomet. Chem.  1968,  12:  P42 
  • 16b Herrmann WA. Angew. Chem. Int. Ed.  2002,  41:  1290 
  • 17 Zhang Y. Ngeow KC. Ying JY. Org. Lett.  2007,  9:  3495 
  • 19a Chiu PL. Lai C. Chang C. Hu C. Lee HM. Organometallics  2005,  24:  6169 
  • 19b Inamoto K. Kuroda J. Danjo T. Sakamoto T. Synlett  2005,  1624 
18

Synthesis of Silica-Coated Magnetic Particles: A two-necked round-bottomed flask (RBF) containing NH4OH (250 mL) and deionized (DI) H2O (250 mL) was vigorously stirred with an overhead stirrer at 500 rpm. A freshly prepared aq solution of iron chloride (100 mL) containing FeCl2˙4H2O (2.57 g, 12.93 mmol) and FeCl3˙6H2O (6.18 g, 22.6 mmol) was dropwise mixed with NH4OH solution for 30 min. The resultant mixture was stirred for additional 1 h at r.t., then the formed MNPs were separated using a magnet (4000 gauss). The MNPs were washed with DI H2O (20 ×) and MeOH (5 ×) by repeating magnet separation and decantation. The MNPs (1.35 g) dried in vacuo were treated with 1% 3-aminopropyltriethoxysilane in CHCl3 (80 mL) at 60 ˚C for 4 h. The aminated MNPs were washed with CHCl3 (10 ×) and MeOH (5 ×) by repeating magnet separation and decantation. The MNPs (1 g) dried in vacuo (elemental analysis, N%: 0.382%, 0.27 mmol/g) were treated with 2% TEOS (tetraethyl orthosilicate) in EtOH and shaken at 30 ˚C for 12 h. The particles were washed with EtOH (6 ×) repeating magnet separation and decantation.

20

Preparation of Catalyst 5 [MNP-Si-NHC(Pyr)-Ni] and Catalyst 7 [MNP-Si-NHC(Bz)-Ni]: The aforementioned magnetic nanoparticles (MNPs) were redispersed in toluene and the resulting solution was heated to reflux. Then, 1-(3-triethoxysilylpropyl)-2-imidazoline was added. After 24 h, the solution was cooled to r.t. MNPs were concentrated magnetically by using an external permanent magnet and washed with toluene and EtOH. Imidazolinyl-functionalized MNPs were redispersed and reacted with 2-picolyl chloride or benzyl chloride at 80 ˚C in CHCl3 for 12 h, affording 4 and 6. After washing, the loadings of imidazoles on MNP-Si were determined by their nitrogen contents by elementary analysis (4, 0.47 mmol/g; 6, 0.67 mmol/g). The NHC ligand functionalized MNPs were then redissolved in a mixture
of Ni(acac)2 at 60 ˚C in DMSO under basic conditions (Scheme  [²] ). After 12 h, the mixture was cooled to r.t., and then catalyst 5 [MNP-Si-NHC(Pyr)-Ni] or catalyst 7 [MNP-Si-NHC(Bz)-Ni] were magnetically separated by using the external magnet. The prepared catalysts were washed with CHCl3, EtOH, and H2O subsequently.

21

General Procedure for C-S Cross-Coupling Reaction: To a mixture of 10 mol% of catalyst in DMF (1 mL) and Cs2CO3 (2 mmol) were added an aryl halide (1 mmol) and a thiol
(1 mmol). The temperature was raised to 100 ˚C. After 10 h, the mixture was cooled to r.t. The used catalysts were removed magnetically by using an external permanent magnet and dried for reuse in the next round of reactions. The desired products were washed with H2O and extracted with EtOAc. Then, the organic phase was evaporated in vacuo and the residues were subjected to flash column chromatography purification.

22

After the 4th run, unfortunately the coupling yields were decreased (ca. 10%) and leaching of nickel species was detected from the filtrates after the 4th run and the 5th run (14% and 18%, by ICP-AES analysis of the filtrate).