Synlett 2009(11): 1800-1802  
DOI: 10.1055/s-0029-1217327
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Stille Cross-Coupling Reactions Using Vinylcyclopropylstannanes

Gerald Pattenden*, Davey A. Stoker
School of Chemistry, The University of Nottingham, Nottingham, NG7 2RD, UK
Fax: +44(115)9513535; e-Mail: gp@nottingham.ac.uk;
Further Information

Publication History

Received 3 February 2009
Publication Date:
02 June 2009 (online)

Abstract

The Stille cross-coupling reaction between a vinylcyclopropylstannane and iodobenzene or phenol triflate provides an expedious route to 1,2-phenylvinylcyclopropanes. However, similar coupling reactions using ortho-substituted aromatic substrates also lead to butylaromatic products, resulting from competitive sp³-sp² coupling reactions.

    References and Notes

  • 1a Stille JK. Angew. Chem., Int. Ed. Engl.  1986,  25:  508 
  • 1b Farina V. Krishnamurthy V. Scott WK. In Organic Reactions   Vol. 50:  Wiley; New York: 1997. 
  • 1c Mitchell TN. In Metal-Catalyzed Cross-Coupling Reactions   de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004.  Chapt. 3.
  • 2 For a Negishi cross-coupling involving a vinylcyclopropylstannane and a vinyl iodide, see: Piers E. Jean M. Marrs PS. Tetrahedron Lett.  1987,  43:  5075 
  • For zirconium-catalysed and Negishi cross-coupling reactions using vinylcyclopropyl halides and vinyl substrates, see:
  • 3a Thomas E. Kasatkin AN. Whitby RJ. Tetrahedron Lett.  2006,  52:  9181 
  • 3b Piers E. Coish PDG. Synthesis  2001,  251 
  • For some Suzuki cross-coupling reactions using cyclopropyl boronic acids, see:
  • 4a Baba D. Yang Y.-J. Uang B.-J. Fuchigami T. J. Fluorine Chem.  2003,  1:  93 
  • 4b Rubina M. Rubin M. Gevorgyan V. J. Am. Chem. Soc.  2003,  24:  7198 
  • 4c Wallace DJ. Chen C.-Y. Tetrahedron Lett.  2002,  39:  6987 
  • 4d Zhou S.-M. Deng M.-Z. Xia L.-J. Tang M.-H. Angew. Chem. Int. Ed.  1998,  20:  2845 
  • 5 Oda H. Kobayashi T. Kosugi M. Migita T. Tetrahedron  1995,  51:  695 
  • For some examples, see:
  • 8a Allegretti M. Bertini R. Cesta MC. Bizzarri C. Di Bitondo R. Di Cioccio V. Galliera E. Berdini V. Topai A. Zampella G. Russo V. Di Bello N. Nano G. Nicolini L. Locati M. Fantucci P. Florio S. Colotta F. J. Med. Chem.  2005,  13:  4312 
  • 8b Tamayo N. Echavarren AM. Paredes MC. Fariña F. Noheda P. Tetrahedron Lett.  1990,  36:  5189 
  • 8c Echavarren AM. Stille JK. J. Am. Chem. Soc.  1987,  18:  5478 
  • For examples of some competitive alkyl vs aryl couplings involving aryltributylstannane precursors, see:
  • 9a Yasuda N. Yang C. Wells KM. Jensen MS. Hughes DL. Tetrahedron Lett.  1999,  3:  427 
  • 9b O’Neill DJ. Shen L. Prouty C. Conway BR. Westover L. Wu JZ. Zhang HC. Maryanoff BE. Murray WV. Demarest KT. Kuo GH. Bioorg. Med. Chem.  2004,  12:  3167 
  • 9c Paintner FF. Gorler K. Voelter W. Synlett  2003,  522 
  • 9d Ito S. Okujima T. Morita N. J. Chem. Soc., Perkin Trans. 1  2002,  16:  1896 
  • 10 Ohe K. Yokoi T. Miki K. Nishino F. Uemura S. J. Am. Chem. Soc.  2002,  124:  526 
6

The vinylcyclopropylstannane 3 was obtained as a colourless oil. IR (CHCl3): νmax = 3083, 1631 cm. ¹H NMR (400 MHz, CDCl3): δ = 0.11 (1 H, ddd, J = 10.5, 8.5, 5.5 Hz, CHSnBu3), 0.70-0.76 (2 H, m, CHCH 2CH), 0.81 (6 H, t, J = 8.0 Hz, SnCH2), 0.89 (9 H, t, J = 7.5 Hz, CH2CH 3), 1.25-1.36 (6 H, m, CH3CH 2), 1.36-1.44 (1 H, m, CH2=CHCH), 1.44-1.56 (6 H, m, SnCH2CH 2), 4.80 (1 H, dd, J = 10.0, 1.5 Hz, HHC=CH), 5.05 (1 H, dd, J = 17.0, 1.5 Hz, HHC=CH), 5.29 (1 H, ddd, J = 17.0, 10.0, 9.0 Hz, CH2=CH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 2.6 (CH), 8.7 (CH2), 11.5 (CH2), 13.7 (CH3), 19.4 (CH), 27.3 (CH2), 29.1 (CH2), 110.5 (CH2), 144.6 (CH) ppm. MS (EI): m/z C13H25Sn [M + - Bu]: 301.0978; 301.0986.

7

Typical Stille Coupling Procedure: Pd(OAc)2 (10 mol%), Ph3As (60 mol%), CuI (20 mol%), and LiCl (6 equiv) were dissolved in NMP, and the mixture was then stirred at r.t. under an argon atmosphere for 10 min. A soln of the aryltriflate or aryliodide (1.0 equiv.) and the stannane 3 (1.05 equiv) in NMP was added dropwise over 1 min, and the mixture was then degassed and heated to 80 ˚C for 24 h. The cooled mixture was poured onto H2O (50 mL) and EtOAc (50 mL), and the separated aqueous extract was extracted with EtOAc (3 × 100 mL). The combined organic extracts were washed successively with H2O (3 × 20 mL), 2 M aq HCl (10 mL) and brine (50 mL), then dried (Na2SO4) and concentrated in vacuo to leave the coupled product (s) as a colourless oil. Chromatographic separation and purification was carried out on SiO2, using PE (bp 40-60 ˚C), then 1-6% EtOAc in PE as eluant. The o-butylphenol (10a) showed identical spectroscopic data to those reported in the literature.¹0
Butylcinnamate 10b
IR (CHCl3): νmax = 1727cm. ¹H NMR (360 MHz, CDCl3): δ = 0.94 (3 H, t, J = 7.0 Hz, CH2CH 3), 1.35 (3 H, t, J = 7.0 Hz, OCH2CH 3), 1.60-1.70 (4 H, m, CH 2CH 2), 2.75 (2 H, t, J = 7.0 Hz, ArCH2), 4.28 (2 H, t, J = 7.0 Hz, OCH 2CH3), 6.40 (1 H, d, J = 15.0 Hz, COCH=), 7.10-7.70 (4 H, m, ArH), 8.04 (1 H, d, J = 15.0 Hz, ArCH=) ppm. ¹³C NMR (90 MHz, CDCl3): δ = 13.9 (CH3), 14.3 (CH3), 22.5 (CH2), 25.6 (CH2), 33.8 (CH2), 60.5 (CH2), 119.3 (CH), 126.5 (CH), 127.3 (CH), 128.6 (CH), 130.0 (CH), 133.7 (C), 134.0 (C), 142.3 (CH), 168.0 (C) ppm.
Butylaromatic Compound 10c
¹H NMR (360 MHz, CDCl3): δ = 0.96 [3 H, t, J = 7.0 Hz, (CH2)2CH 3], 1.30 (3 H, t, J = 7.5 Hz, OCH2CH 3), 1.33 (2 H, m, CH2CH 2CH3), 1.62 (2 H, app. pent., J = ca. 7 Hz, CH2CH 2CH2) 1.71 (3 H, s, CH=CCH 3), 2.20-2.40 (4 H, m, CH2CH2CO2Et), 2.55 (2 H, t, J = 7.0 Hz, ArCH2), 3.22 (2 H, d, J = 6.0 Hz, ArCH 2CH=), 4.12 (2 H, q, J = 7.5 Hz, OCH 2CH3), 5.80 (1 H, t, J = 6.0 Hz, =CHCH2), 6.90-7.05 (4 H, m, ArH) ppm. ¹³C NMR (90 MHz, CDCl3): δ = 14.1 (2 × CH3), 17.1 (CH3), 22.4 (CH2), 29.6 (CH2), 31.9 (CH2), 33.8 (CH2), 34.6 (CH2), 35.2 (CH2), 61.3 (CH2), 122.8 (CH), 125.6 (CH), 125.9 (CH), 128.1 (CH), 128.9 (CH), 135.5 (C), 136.5 (C), 136.6 (C), 173.1 (C) ppm.
Arylvinylcyclopropane 9b
¹H NMR (360 MHz, CDCl3): δ = 1.15-1.30 (2 H, m, CHCH 2CH), 1.60 (3 H, t, J = 7.0 Hz, CH2CH 3), 1.60-1.75 (1 H, m, CHCH2CH), 2.10-2.20 (1 H, m, CHCH2CH), 4.30 (2 H, q, J = 7.0 Hz, CH 2CH3), 5.10 (1 H, d, J = 11.0 Hz, CH=CHH), 5.20 (1 H, d, J = 16.0 Hz, CH=CHH), 5.70 (1 H, ddd, J = 16.0, 11.0, 8.0 Hz, CH=CH2), 6.40 (1 H, d, J = 15.0 Hz, ArCH=CH), 7.00-7.60 (4 H, m, ArH), 8.30 (1 H, d, J = 15.0 Hz, ArCH=CH) ppm.
Vinylcyclopropane 9c
IR (CHCl3): νmax = 3011 (s), 1727 (s), 1634 (m), 1602 (w) cm. ¹H NMR (400 MHz, CDCl3): δ = 1.05 (1 H, app dt, J = 8.5, 5.0Hz, ArCHCHH), 1.22 (3 H, t, J = 7.0 Hz, OCH2CH 3), 1.24-1.27 (1 H, m, ArCHCHH), 1.54-1.59 (1 H, m, H2C=CHCH), 1.72 (3 H, app s, C=CCH3), 1.96 (1 H, ddd, J = 8.5, 5.5, 5.0 Hz, ArCH), 2.36 (2 H, t, J = 7.0Hz, O=CCH2CH 2), 2.43 (2 H, t, J = 7.0 Hz, O=CCH 2CH2), 3.43 (1 H, dd, J = 16.0, 7.0 Hz, ArCHH), 3.49 (1 H, dd, J = 16.0, 7.0 Hz, ArCHH), 4.10 (2 H, q, J = 7.0 Hz, OCH 2CH3), 4.96 (1 H, dd, J = 10.0, 1.5 Hz, HC=CHH), 5.13 (1 H, dd, J = 17.0, 1.5 Hz, HC=CHH), 5.34 (1 H, app tq, J = 7.0, 1.5 Hz, C=CH), 5.58 (1 H, ddd, J = 17.0, 10.0, 8.5 Hz, H2C=CH), 6.99 (1 H, dd, J = 6.0, 2.0 Hz, ArH), 7.12-7.15 (3 H, m, 3 × ArH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 14.2 (CH3), 14.6 (CH2), 16.2 (CH3), 23.0 (CH), 25.7 (CH), 31.6 (CH2), 33.2 (CH2), 34.7 (CH2), 60.3 (CH2), 112.4 (CH2), 123.6 (CH), 125.7, 126.0, 126.1 (3 × CH), 128.4 (CH), 134.4 (C), 139.5 (C), 140.9 (C), 141.0 (CH), 173.4 (C) ppm.
MS (ES): m/z C20H26O2Na [M + Na+]: 321.1825; found: 321.1817.