Synlett 2008(19): 2973-2976  
DOI: 10.1055/s-0028-1087343
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Chiral Carbohydrate Ionic Liquids

Patrice G. J. Plaza, Bhoomendra A. Bhongade, Gurdial Singh*
Department of Chemistry, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
Fax: +1(868)6453771; e-Mail: gurdial.singh@sta.uwi.edu;
Further Information

Publication History

Received 2 May 2008
Publication Date:
12 November 2008 (online)

Abstract

Chiral room temperature ionic liquids, containing a carbohydrate moiety linked at the anomeric centre to an N-methylimidazolium group have been synthesised. The ionic liquids were prepared in a concise manner and provided ready access to both the d- and l-arabino enantiomers. The same strategy enabled the preparation of d-ribofuranose and d-xylofuranose analogues, in excellent yields.

    References and Notes

  • 1a Boon JA. Levisky JA. Pflug JL. Wilkes JS.
    J. Org. Chem.  1986,  51:  480 
  • 1b Welton T. Chem. Rev.  1999,  99:  2071 
  • 2a Wasserscheid P. Welton T. Ionic Liquids in Synthesis   Wiley-VCH; Weinheim: 2003. 
  • 2b Wasserscheid P. Keim W. Angew. Chem. Int. Ed.  2000,  39:  3772 
  • 2c Sheldon RA. Chem. Commun.  2001,  2399 
  • 2d Handy ST. Okello M. Tetrahedron Lett.  2003,  45:  8399 
  • 2e Xu X. Kotti SRSS. Liu J. Cannon JF. Headley AD. Li G. Org. Lett.  2004,  6:  4881 
  • 2f Xiao J.-C. Shreeve JM.
    J. Org. Chem.  2005,  70:  3072 
  • For recent reviews, see:
  • 3a Baudequin C. Baudoux J. Levillain J. Cahard D. Gaumont AC. Plaqueventa J.-C. Tetrahedron: Asymmetry  2003,  14:  3081 
  • 3b Xue H. Verma R. Shreeve JM. J. Fluorine Chem.  2006,  127:  159 
  • 3c Singh RP. Verma RD. Meshri DT. Shreeve JM. Angew. Chem. Int. Ed.  2006,  45:  3584 
  • 3d Hagiwara R. Lee JS. Electrochemistry  2007,  75:  23 
  • 3e Parvulescu VI. Hardacre C. Chem. Rev.  2007,  107:  2615 
  • 3f van Rantwijk F. Sheldon RA. Chem. Rev.  2007,  107:  2757 
  • 3g Winkel A. Reddy PVG. Wilhelm R. Synthesis  2008,  999 
  • 3h Headley AD. Ni B. Aldrichimica Acta  2007,  40:  107 
  • 4a Huddleston JG. Willauer HD. Swatloski RP. Visser AE. Rogers RD. Chem. Commun.  1998,  16:  1765 
  • 4b Armstrong DW. He L. Liu Y.-S. Anal. Chem.  1999,  71:  3873 
  • 4c Huddleston JG. Visser AE. Reichert WM. Willauer HD. Broker GA. Rogers RD. Green Chem.  2001,  3:  156 
  • 4d Liu J.-F. Jiang G.-B. Chi Y.-G. Cai Y.-Q. Zhou Q.-X. Hu J.-T. Anal. Chem.  2003,  75:  5870 
  • 5 Handy ST. Curr. Org. Chem.  2005,  9:  959 
  • 6a Welton T. Coord. Chem. Rev.  2004,  248:  2459 
  • 6b Lee S. Chem. Commun.  2006,  1049 
  • 7 Baudequin C. Bregeon D. Levillain J. Guillen F. Plaquevent J.-C. Gaumont A.-C. Tetrahedron: Asymmetry  2005,  16:  3921 
  • 8a Earle MJ. McCormac PB. Seddon KR. Green Chem.  1999,  1:  23 
  • 8b Wang Z. Wang Q. Zhang Y. Bao W. Tetrahedron  2005,  46:  4657 
  • 8c Carda-Broch S. Berthod A. Armstrong DW. Anal. Bioanal. Chem.  2003,  375:  191 
  • 9a Baudoux J. Judeinstein P. Cahard D. Plaquevert J.-C. Tetrahedron Lett.  2005,  46:  1137 
  • 9b Fringuelli F. Pizzo F. Tortoioli S. Vaccaro L. J. Org. Chem.  2004,  69:  7745 
  • 9c Tosoni M. Laschat S. Bato A. Helv. Chim. Acta  2004,  87:  2742 
  • 10 Baudequin C. Baudoux J. Levillain J. Cahard D. Gaumont AC. Plaqueventa J.-C. Tetrahedron: Asymmetry  2003,  14:  3081 
  • 11 Levillian J. Dubant G. Abrunhosa I. Gulea M. Gaumont AC. Chem. Commun.  2003,  2914 
  • 12 Pernak J. Feder-Kubis J. Chem. Eur. J.  2005,  11:  4441 
  • 13a Génisson Y. Lauthde Viguerie N. André C. Baltas M. Gorrichon L. Tetrahedron: Asymmetry  2005,  16:  1017 
  • 13b Ding J. Desikan V. Han X. Xiao TL. Ding R. Jenks WS. Armstrong DW. Org. Lett.  2005,  7:  335 
  • 13c Jodry JJ. Mikami K. Tetrahedron Lett.  2004,  45:  4429 
  • 13d Bao W. Wang Z. Li Y. J. Org. Chem.  2003,  68:  591 
  • 13e Guillen F. Brégeon D. Plaquevent J.-C. Tetrahedron Lett.  2006,  47:  1245 
  • 13f Ni B. Headley AD. Tetrahedron Lett.  2006,  47:  7331 
  • 14 Brown T. Kadir K. Mackenzie G. Shaw G. J. Chem. Soc., Perkin Trans. 1  1979,  3107 
  • 15a Barker R. Fletcher HG. J. Org. Chem.  1961,  26:  4605 
  • 15b Austin PW. Hardy FE. Buchanan JG. Baddiley J. J. Chem. Soc.  1964,  2128 
  • 15c Finch P. Iskander GM. Siriwardena AH. Carbohydr. Res.  1991,  210:  319 
  • 15d Tejima S. Fletcher HG. J. Org. Chem.  1963,  28:  2999 
  • 15e Kawana M. Kuzuhara H. Emoto S. Bull. Chem. Soc. Jpn.  1981,  54:  1492 
  • 16 Yuan L. Singh G. Tetrahedron Lett.  2001,  42:  6615 
  • 19 Cicchillo RM. Norris P. Carbohydr. Res.  2000,  328:  431 
17

Selected Data
Compound 14 (X = Cl): [α]D ²8 +28 (c 1.1, CHCl3). IR (film): νmax = 3429, 3143, 3064, 3032, 2923, 2870, 1634, 1578, 1556, 1454, 1364, 1264, 1157, 1090, 1030, 748, 701, 638 cm. ¹H NMR (400 MHz, CDCl3): δ = 3.60 (3 H, s), 3.62
(1 H, dd, J = 2.8, 10.9 Hz), 3.82 (1 H, dd, J = 3.0, 10.9 Hz), 4.13 (1 H, m), 4.23 (1 H, t, J = 6.8 Hz), 4.41 (1 H, d, J = 11.1 Hz), 4.48 (1 H, d, J = 11.1 Hz), 4.53 (1 H, d, J = 11.9 Hz), 4.64 (2 H, d, J = 6.3Hz), 4.57 (1 H, m), 4.69 (1 H, d, J = 11.9 Hz), 6.46 (1 H, d, J = 5.8 Hz), 7.22-7.40 (16 H, m), 7.73
(1 H, m), 9.40 (1 H, s) ppm. ¹³C NMR (100 MHz, CDCl3):
δ = 36.0, 68.0, 72.5, 73.5, 78.2, 81.0, 82.6, 87.3, 121.5, 122.5, 128.1, 127.9, 128.1, 128.2, 128.3, 128.5, 128.6, 135.5, 136.4, 137.1, 137.2 ppm. ESI-MS: m/z calcd C30H33N2O4: 485.2435; found: 485.2423. Glass-transition temperature: 18 ˚C.
Compound 15 (X = PF6 -): [α]D ²8 +14 (c 1.1, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 3.41 (3 H, s), 3.57 (1 H, dd, J = 3.2, 10.9 Hz), 3.75 (1 H, dd, J = 3.3, 10.8 Hz), 4.09 (1 H, m), 4.17 (1 H, t, J = 6.7 Hz), 4.37 (1 H, d, J = 10.8 Hz), 4.43-4.50 (5 H, m), 4.62 (1 H, d, J = 11.8 Hz), 6.05 (1 H, d, J = 5.6 Hz), 7.05 (1 H, t, J = 1.7 Hz), 7.15-7.36 (15 H, m), 7.39
(1 H, t, J = 1.7 Hz), 8.56 (1 H, br s) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 35.9, 68.2, 73.3, 73.4, 73.5, 78.6, 81.3, 82.3, 87.4, 121.3, 122.7, 127.7, 127.9, 128.0, 128.1, 128.2, 128.3, 128.5, 128.6, 134.9, 136.2, 137.1, 137.2 ppm. ³¹P NMR (160 Hz, CDCl3): δ = -142.9 (sept., J = 712.7 Hz) ppm. Glass-transition temperature -23 ˚C.
Compound 16: [α]D ²8 +9.5 (c 1.05, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 3.48 (3 H, s, NCH3), 3.59 (1 H, dd, J = 3.2, 10.9 Hz), 3.76 (1 H, dd, J = 3.2, 10.9 Hz, H-5, H-5′), 4.09 (1 H, m, H-4), 4.18 (1 H, t, J = 6.4 Hz, H-3), 4.38 (1 H, d, J = 11.0 Hz), 4.45 (1 H, d, J = 11.0 Hz), 4.46-4.53 (4 H, H-2), 4.61 (1 H, d, J = 11.8 Hz), 6.22 (1 H, d, J = 5.5 Hz), 7.16-7.36 (16 H), 7.53 (1 H, t, J = 1.7 Hz,), 8.75 (1 H, br s) ppm. ¹³C (100 MHz, CDCl3): 35.7, 67.9, 72.2, 73.1, 75.0, 78.3, 80.9, 82.1, 87.1, 121.1, 122.1, 127.4-128.4, 134.9, 136.3, 137.0, 137.1 ppm. ¹9F (376.5 MHz, CDCl3): -151.0 ppm. Glass-transition temperature -36 ˚C.
Compound 19: [α]D ²8 +22.3 (c 1.3, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 3.46 (1 H, dd, J = 3.2, 10.6 Hz), 3.52
(1 H, dd, J = 3.5, 10.6 Hz), 3.77 (3 H, s), 4.01 (1 H, dd, J = 1.8, 5.1 Hz), 4.41-4.62 (8 H, m), 6.25 (1 H, d, J = 5.8 Hz), 7.19-7.36 (16 H, m), 7.54 (1 H, s), 9.28 (1 H, s) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 36.0, 69.7, 72.5, 73.3, 73.4, 76.4, 76.9, 77.3, 78.1, 84.7, 87.9, 121.6, 122.1, 127.6, 127.8, 127.9, 128.0, 128.1, 128.3, 128.4, 136.5, 136.8, 137.3 ppm. Glass-transition temperature 16 ˚C.
Compound 22: ¹H NMR (400 MHz, CDCl3): δ = 3.67-3.76 (2 H, m), 3.93 (3 H, s), 4.05 (1 H, m), 4.22 (1 H, t, J = 5.3 Hz), 4.35-4.46 (3 H, m), 4.51 (1 H, d, J = 11.9 Hz), 4.59
(1 H, d, J = 11.9 Hz), 4.62-4.69 (2 H, m), 6.30 (1 H, d, J = 3.7 Hz), 7.08 (1 H, br s), 7.11-7.36 (15 H, m), 7.39 (1 H, br s), 9.26 (1 H, br s) ppm. ¹³C (100 MHz, CDCl3): δ = 36.3, 68.7, 72.5, 73.3, 75.0, 75.3, 78.0, 82.1, 85.0, 121.1, 122.1, 127.7, 128.5, 135.1, 137.3, 137.7, 137.8, 137.9 ppm.
Compound 23: ¹H NMR (400 MHz, CDCl3): δ = 3.42 (3 H, s), 3.63 (1 H, dd, J = 2.1, 11.0 Hz), 3.89 (1 H, dd, J = 2.5, 11.0 Hz), 4.12 (1 H, m), 4.20 (1 H, t, J = 7.7 Hz), 4.38 (1 H, d, J = 10.5 Hz), 4.47 (1 H, d, J = 10.5 Hz), 4.60 (1 H, d, J = 11.9 Hz), 4.75 (1 H, dd, J = 5.8, 7.2 Hz), 4.85 (1 H, d, J = 11.9 Hz), 6.02 (1 H, d, J = 5.7 Hz), 7.06 (1 H, br s), 7.23-7.39 (10 H, m), 7.69 (1 H, br s), 8.96 (1 H, br s) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 36.1, 68.0, 72.6, 73.5, 78.1, 80.9, 82.6, 87.3, 121.6, 122.4, 127.7, 128.5, 135.8, 136.5, 137.2, 137.3.

18

General Procedure
The 2,3,5-tri-O-benzylsugar (1 mmol) was dissolved in dry CH2Cl2 (10 mL) and cooled to 0 ˚C under Ar atmosphere. Propane-1,3-diyldioxyphosphoryl chloride (2 mmol) was added, followed by 1-methylimidazole (2.5 mmol). The mixture was allowed to warm up to r.t. and stirred overnight (16 h). The reaction was then quenched with sat. NaHCO3 (10 mL) and the organic layer washed with H2O (2 × 10 mL) and dried (Na2SO4). The solvent was then removed in vacuo to give the crude sugar phosphate, which was re-dissolved in dry CH2Cl2 (10 mL) under an Ar atmosphere and cooled to -78 ˚C. trimethylsilyl triflate (cat.) was added and the mixture stirred for 2 min. 1-Methylimidazole hydrochloride (2 mmol) was then added. The reaction mixture was allowed to warm up to r.t. and stirred until TLC (CHCl3-MeOH, 80:20) showed the reaction had gone to completion (4 h). The mixture was then diluted with CH2Cl2 (10 mL) and washed with sat. aq NaHCO3 (2 × 20 mL) and H2O (2 × 20 mL). The organic layer was dried (Na2SO4) and concentrated in vacuo to give a crude product, that was further purified by column chromatography (CHCl3-MeOH, 80:20).
Silver nitrate test for ionic liquids with anions other than chloride, derived via metathesis: The ionic liquid (1 mg) is dissolved in MeOH-deionized H2O (1:1; 1 mL). The resulting solution is tested with 0.1 M AgNO3 (2 drops). No precipitation was observed in BF4 and PF6 ionic liquids.