Synlett 2008(18): 2877-2881  
DOI: 10.1055/s-0028-1083501
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Microwave-Assisted Intramolecular Diels-Alder Reaction towards the Total Synthesis of Symbioimine

Stephen Born, Genesis Bacani, Erin E. Olson, Yoshihisa Kobayashi*
Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0343, La Jolla, CA 92093-0343, USA
e-Mail: ykoba@ucsd.edu;
Further Information

Publication History

Received 10 July 2008
Publication Date:
15 October 2008 (online)

Abstract

Uemura’s proposed biosynthetic pathway of symbioimine was demonstrated by microwave-assisted intramolecular ­Diels-Alder reaction of a trans-enone precursor.

    References and Notes

  • 1 Kita M. Kondo M. Koyama T. Yamada K. Matsumoto T. Lee KH. Woo JT. Uemura D. J. Am. Chem. Soc.  2004,  126:  4794 
  • 2 Rowan R. Powers DA. Science  1991,  251:  1348 
  • RANKL induces osteoclast-like multinucleated cell formation in cultures of bone marrow cells. See:
  • 3a Yasuda H. Shima N. Nakagawa N. Yamaguchi K. Kiosaki M. Mochizuki S.-i. Tomoyasu A. Yano K. Goto M. Murakami A. Tsuda E. Morinaga T. Higashio K. Udagawa N. Takahashi N. Suda T. Proc. Natl. Acad. Sci. U. S. A.  1998,  95:  3597 
  • 3b Lancey DL. Timms E. Tan HL. Kelley MJ. Dunstan CR. Burgess T. Elliott R. Colombero A. Elliott G. Scully S. Hsu H. Sullivan J. Hawkins N. Davy E. Capparelli C. Eli A. Qian YX. Kaufman S. Sarosi I. Shalhoub V. Senaldi G. Guo J. Delaney J. Boyle WJ. Cell  1998,  93:  165 
  • 3c Hsu H. Lacey DL. Dunstan CR. Solovyev I. Colombero A. Timms E. Tan H.-L. Elliott G. Kelley MJ. Sarosi I. Wang L. Xia X.-Z. Elliott R. Chiu L. Black T. Scully S. Capparelli C. Morony S. Shimamoto G. Bass MB. Boyle WJ. Proc. Natl. Acad. Sci. U. S. A.  1999,  96:  3540 
  • 4a Kita M. Uemura D. Chem. Lett.  2005,  34:  454 
  • 4b Kita M. Ohishi N. Washida K. Kondo M. Koyama T. Yamada K. Uemura D. Bioorg. Med. Chem.  2005,  13:  5253 
  • Reported total syntheses of symbioimine, see:
  • 5a Varseev GN. Maier ME. Angew. Chem. Int. Ed.  2006,  45:  4767 
  • 5b Zou Y. Che Q. Snider BB. Org. Lett.  2006,  24:  5605 
  • 5c Kim J. Thomson RJ. Angew. Chem. Int. Ed.  2007,  46:  3104 
  • For other synthetic studies, see:
  • 5d Snider BB. Che Q. Angew. Chem. Int. Ed.  2006,  45:  932 
  • 5e Sakai E. Araki K. Takamura H. Uemura D. Tetrahedron Lett.  2006,  47:  6343 
  • For our own efforts along with 2,3-dihydropyridine strategy, see:
  • 5f Born S. Kobayashi Y. Synlett  2008,  2479 
  • 6a Gras J.-L. Bertrand M. Tetrahedron Lett.  1979,  4549 
  • 6b Gras J.-L. J. Org. Chem.  1981,  46:  3738 
  • 6c Taber DF. Kong S. Malcolm SC. J. Org. Chem.  1998,  63:  7953 
  • 6d Coe JW. Roush WR. J. Org. Chem.  1989,  54:  915 
  • 6e Frankowski KJ. Golden JE. Zeng Y. Lei Y. Aubé J. J. Am. Chem. Soc.  2008,  130:  6018 
  • 7 Sammakia showed an interesting method to prepare an octalone core structure of dihydrocompactin, see: Sammakia T. Johns DM. Kim G. Berliner MA. J. Am. Chem. Soc.  2005,  127:  6504 
  • Preparation of (E)-6-iodohex-5-en-1-ol:
  • 8a Lipshutz BH. Kell R. Ellsworth EL. Tetrahedron Lett.  1990,  31:  7257 
  • 8b Nishida A. Shirato F. Nakagawa M. Tetrahedron: Asymmetry  2000,  11:  3789 
  • 9 Synthesis of pinacolboronate: Shirakawa K. Arase A. Hoshi M. Synthesis  2004,  1814 
  • 10a More JD. Finney NS. Org. Lett.  2002,  4:  3001 
  • 10b Frigerio M. Santagostino M. Sputore S. J. Org. Chem.  1999,  64:  4537 
  • 11 Preparation of β-ketophosphonate: Hosokawa S. Seki M. Fukuda H. Tatsuta K. Tetrahedron Lett.  2006,  47:  2439 
  • Attempted Diels-Alder reaction of 11 under conventional conditions:
  • 12a

    xylene, reflux, 2 d, and

  • 12b

    MeAlCl2, CH2Cl2, -78 ˚C.

13

Microwave instrument: CEM Discovery Labmate microwave system.

14

Microwave-assisted heating of 11 in ethanol provided the Diels-Alder adducts 12a and 12b in 69% with exo/endo = 1:2.

15

The minor diastereomer was assumed to be the exo-adduct. We do not exclude the possibility of epimerization of the major kinetic endo-adduct 14 to the minor exo-adduct under the reaction conditions.

16

As expected, the bulky dienophile below did not afford any Diels-Alder adduct even under the microwave-assisted heating conditions. The starting material was recovered quantitatively (Scheme  [8] ).

Scheme 8

17

¹ H NMR and ¹³ C NMR Data for Compounds 11, 12a,b, and 14
Compound 11: ¹H NMR (400 MHz, CDCl3): δ = 6.78 (q, J = 11.2, 6.4 Hz, 1 H), 6.70 (dd, J = 11.2, 16.0 Hz, 1 H), 6.51 (d, J = 2.4 Hz, 2 H), 6.35 (d, J = 15.6 Hz, 1 H), 6.32 (t, J = 2.4 Hz, 1 H), 6.18 (dd, J = 15.6, 10.4 Hz, 1 H), 6.02 (dd, J = 16.0, 1.6 Hz, 1 H), 5.78 (dt, J = 14.4, 7.2 Hz, 1 H), 3.77 (s, 6 H), 2.54 (t, J = 7.2 Hz, 2 H), 2.48-2.38 (m, 1 H), 2.16 (dt, J = 13.6, 6.4 Hz, 2 H), 1.74 (app q, J = 8.0 Hz, 2 H), 1.04 (d, J = 6.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl3): δ = 200.8, 160.8 (2 C), 153.4, 139.5, 135.1, 131.1, 130.3, 129.7, 127.5, 104.1 (2 C), 99.6, 55.3 (2 C), 32.2, 31.1, 23.6, 21.3 (2 C).
Compound 12a (exo): ¹H NMR (400 MHz, CDCl3): δ = 6.44 (d, J = 2.0 Hz, 2 H), 6.35 (t, J = 2.4 Hz 1 H), 5.83 (ddd, J = 6.8, 4.8, 1.6 Hz, 1 H), 5.64 (dt, J = 9.6, 1.6 Hz, 1 H), 3.77 (s, 6 H), 3.45-3.38 (m, 1 H), 2.62 (app t, J = 10.8 Hz, 1 H), 2.56-2.34 (m, 3 H), 2.25-2.02 (m, 4 H), 1.84-1.58 (m, 2 H), 0.69 (d, J = 7.2 Hz, 3 H), 0.43 (d, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 212.6, 160.3 (2 C), 144.6, 131.0, 129.5, 108.6 (2 C), 97.8, 55.3 (2 C), 51.8, 45.6, 43.9, 43.2, 42.1, 33.0, 28.2, 27.0, 19.5, 19.0.
Compound 12b (endo): ¹H NMR (400 MHz, CDCl3): δ = 6.34 (d, J = 2.0 Hz, 2 H), 6.30 (t, J = 1.6 Hz, 1 H), 5.70 (ddd, J = 10.0, 5.2, 2.8 Hz, 1 H), 5.47 (d, J = 9.6 Hz, 1 H), 3.77 (s, 6 H), 3.15 (dd, J = 10.0, 2.4 Hz 1 H), 2.62 (dd, J = 11.2, 4.8 Hz, 1 H), 2.52 (dt, J = 12.8, 6.0 Hz, 1 H), 2.45-2.41 (m, 1 H), 2.31-2.26 (m, 2 H), 2.05 (ddd, J = 12.4, 5.2, 3.2 Hz, 1 H), 1.89 (dd, J = 13.2, 3.6 Hz, 1 H), 1.80-1.60 (m, 3 H), 0.79 (d, J = 7.2 Hz, 3 H), 0.75 (d, J = 7.6 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 215.6, 160.7 (2 C), 147.8, 131.5, 128.6, 106.8 (2 C), 97.6, 55.2 (2 C), 52.9, 46.0, 43.1, 40.3, 40.0, 29.4, 29.0, 26.6, 19.9.
Compound 14: ¹H NMR (400 MHz, CDCl3): δ = 6.32 (d, J = 2.4 Hz, 2 H), 6.30 (t, J = 2.4 Hz, 1 H), 5.87 (ddd, J = 10.0, 4.8, 2.4 Hz, 1 H), 5.70 (dd, J = 10.4, 1.6 Hz, 1 H), 3.75 (s, 6 H), 3.38 (ddd, J = 11.2, 6.0, 2.4 Hz, 1 H), 2.70 (ddd, J = 13.2, 5.2, 3.2 Hz, 1 H), 2.48-2.40 (m, 1 H), 2.31-2.27 (m, 2 H), 2.04-1.96 (m, 1 H), 1.92-1.83 (m, 2 H), 1.76 (dd, J = 13.2, 11.2 Hz 1 H), 1.66-1.55 (m, 2 H). ¹³C NMR (100 MHz, CDCl3): δ = 214.4, 160.8 (2 C), 147.6, 130.9, 129.8, 105.3 (2 C), 98.0, 55.2 (2 C), 50.2, 43.1, 38.5, 37.2, 32.1, 28.3, 24.8.