Synthesis 2024; 56(03): 427-434
DOI: 10.1055/a-2204-8461
paper

Metal-Free Synthesis of 9-Sulfenylphenanthrenes via HNO3/HCl-Promoted Annulation of 2-Alkynylbiaryls with Disulfides

Tian Luan
,
,
Zhi-Xiang Yao
,
Hui Su
,
Wan-Guo Yu
This project was financially supported by the National Natural Science Foundation of China (No. 21602036), the Ph.D. Foundation of Guangxi University of Science and Technology (14Z05), the Dean Project of Guangxi Key Laboratory of Green Processing of Sugar Resources (GXTZYZR202204).


Abstract

A metal-free thiolative annulation of 2-alkynylbiaryls with disulfides has been developed. This mild and efficient approach was promoted by inexpensive HNO3/HCl and afforded a range of corresponding 9-sulfenylphenanthrenes in good to excellent yields with a broad substrate scope and high functional group tolerance. Both sulfide groups of the disulfide reagent were used in the reaction.

Supporting Information



Publication History

Received: 26 September 2023

Accepted after revision: 06 November 2023

Accepted Manuscript online:
06 November 2023

Article published online:
11 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Feng M, Tang B, Liang HS, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
    • 1b Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
    • 1c Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 1d Gangjee A, Zeng Y, Talreja T, McGuire JJ, Kisliuk RL, Queener SF. J. Med. Chem. 2007; 50: 3046
    • 1e Llauger L, He H, Kim J, Aguirre J, Rosen N, Peters U, Davies P, Chiosis G. J. Med. Chem. 2005; 48: 2892
    • 1f Wang Y, Chackalamannil S, Hu Z, Clader JW, Greenlee W, Billard W, Binch H, Crosby G, Ruperto V, Duffy RA, McQuade R, Lachowicz JE. Bioorg. Med. Chem. Lett. 2000; 10: 2247
    • 1g Liu G, Link JT, Pei Z, Reilly EB, Leitza S, Nguyen B, Marsh KC, Okasinski GF, von Geldern TW, Ormes M, Fowler K, Gallatin M. J. Med. Chem. 2000; 43: 4025
    • 2a Takimiya K, Shinamura S, Osaka I, Miyazaki E. Adv. Mater. 2011; 23: 4347
    • 2b Okamoto T, Mitsui C, Yamagishi M, Nakahara K, Soeda J, Hirose Y, Miwa K, Sato H, Yamano A, Matsushita T, Uemura T, Takeya J. Adv. Mater. 2013; 25: 6392
    • 2c Mori T, Nishimura T, Yamamoto T, Doi I, Miyazaki E, Osaka I, Takimiya K. J. Am. Chem. Soc. 2013; 135: 13900
    • 2d Vizer SA, Sycheva ES, Al Quntar AA. A, Kurmankulov NB, Yerzhanov KB, Dembitsky VM. Chem. Rev. 2015; 115: 1475
    • 2e Otocka S, Kwiatkowska M, Madalińska L, Kiełbasiński P. Chem. Rev. 2017; 117: 4147
    • 2f Dunbar KL, Scharf DH, Litomska A, Hertweck C. Chem. Rev. 2017; 117: 5521
    • 3a Liu G, Huth JR, Olejniczak ET, Mendoza R, DeVries P, Leitza S, Reilly EB, Okasinski GF, Fesik SW, von Geldern TW. J. Med. Chem. 2001; 44: 1202
    • 3b De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2006; 49: 947
    • 3c Kaldor SW, Kalish VJ, Davies JF, Shetty BV, Fritz JE, Appelt K, Burgess JA, Campanale KM, Chirgadze NY, Clawson DK, Dressman BA, Hatch SD, Khalil DA, Kosa MB, Lubbehusen PP, Muesing MA, Patick AK, Reich SH, Su KS, Tatlock JH. J. Med. Chem. 1997; 40: 3979
    • 4a Beletskaya IP, Ananikov VP. Chem. Rev. 2022; 122: 16110
    • 4b Amri N, Wirth T. Chem. Rec. 2021; 21: 2526
    • 4c Matsuzawa T, Yoshida S, Hosoya T. Tetrahedron Lett. 2018; 59: 4197
    • 4d Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
    • 4e Arisawa M, Yamaguchi M. Pure Appl. Chem. 2008; 80: 993
    • 4f Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205
    • 4g Wang G, Gao L, Feng Y, Lin L. Org. Lett. 2023; 25: 4340
    • 4h Zhong S, Zhou Z, Zhao F, Mao G, Deng G.-J, Huang H. Org. Lett. 2022; 24: 1865
    • 4i Volkov AA, Bugaenko DI, Bogdanov AV, Karchava AV. J. Org. Chem. 2022; 87: 8170
    • 4j Liu B, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2017; 139: 13616
    • 5a Zhang B, Li X, Li X, Yu Z, Zhao B, Wang X, Du Y, Zhao K. J. Org. Chem. 2021; 86: 17274
    • 5b Li X, Zhang B, Zhang J, Wang X, Zhang D, Du Y, Zhao K. Chin. J. Chem. 2021; 39: 1211
    • 5c Zhang B, Li X, Li X, Sun F, Du Y. Chin. J. Chem. 2021; 39: 887
    • 5d La-ongthong K, Naweephattana P, Khaikate O, Surawatanawong P, Soorukram D, Pohmakotr M, Reutrakul V, Leowanawat P, Kuhakarn C. J. Org. Chem. 2020; 85: 6338
    • 5e Tambe SD, Rohokale RS, Kshirsagar UA. Eur. J. Org. Chem. 2018; 2117
    • 5f Bi C, Zhang L, Qiu G, Li X, Yao J, Zhou H. Org. Biomol. Chem. 2018; 16: 3006
    • 5g Shi Q, Li P, Zhang Y, Wang L. Org. Chem. Front. 2017; 4: 1322
    • 5h Meesin J, Pohmakotr M, Reutrakul V, Soorukram D, Leowanawat P, Kuhakarn C. Org. Biomol. Chem. 2017; 15: 3662
    • 5i Han D, Li Z, Fan R. Org. Lett. 2014; 16: 6508
    • 5j Sharma S, Pathare RS, Sukanya, Maurya AK, Goswami B, Agnihotri VK, Sawant DM, Pardasani RT. Tetrahedron Lett. 2017; 58: 3823
    • 5k Du H.-A, Tang R.-Y, Deng C.-L, Liu Y, Li J.-H, Zhang X.-G. Adv. Synth. Catal. 2011; 353: 2739
    • 5l Chen Y, Cho C.-H, Larock RC. Org. Lett. 2009; 11: 173
    • 5m Chen Y, Cho C.-H, Shi F, Larock RC. J. Org. Chem. 2009; 74: 6802
    • 5n Guo Y.-J, Tang R.-Y, Li J.-H, Zhong P, Zhang X.-G. Adv. Synth. Catal. 2009; 351: 2615
    • 6a Zhao X, Zhang L, Lu X, Li T, Lu K. J. Org. Chem. 2015; 80: 2918
    • 6b Gay RM, Manarin F, Schneider CC, Barancelli DA, Costa MD, Zeni G. J. Org. Chem. 2010; 75: 5701
    • 6c Du H.-A, Zhang X.-G, Tang R.-Y, Li J.-H. J. Org. Chem. 2009; 74: 7844
    • 6d Manarin F, Roehrs JA, Gay RM, Brandão R, Menezes PH, Nogueira CW, Zeni G. J. Org. Chem. 2009; 74: 2153
    • 6e Yue D, Yao T, Larock RC. J. Org. Chem. 2005; 70: 10292
    • 6f Han J.-S, Shao Y.-L, Zhang X.-H, Zhong P. Phosphorus, Sulfur Silicon Relat. Elem. 2013; 188: 1599
    • 6g Xu M, Zhang X.-H, Zhong P. Tetrahedron Lett. 2011; 52: 6800
    • 7a Hua J, Fang Z, Xu J, Bian M, Liu C, He W, Zhu N, Yang Z, Guo K. Green Chem. 2019; 21: 4706
    • 7b Gao W.-C, Liu T, Zhang B, Li X, Wei W.-L, Liu Q, Tian J, Chang H.-H. J. Org. Chem. 2016; 81: 11297
    • 7c Wei W, Wen J, Yang D, Guo M, Wang Y, You J, Wang H. Chem. Commun. 2015; 51: 768
    • 7d Yang W, Yang S, Li P, Wang L. Chem. Commun. 2015; 51: 7520
    • 7e Zeng Y.-F, Tan D.-H, Chen Y, Lv W.-X, Liu X.-G, Li Q, Wang H. Org. Chem. Front. 2015; 2: 1511
    • 8a Xing L, Zhang Y, Li B, Du Y. Org. Lett. 2019; 21: 3620
    • 8b An X, Zhang B, Li X, Du T, Ai Z, Zhang C, Xu J, Sun F, Zhang Y, Du Y. Eur. J. Org. Chem. 2020; 852
    • 8c Li Y, Li G, Ding Q. Eur. J. Org. Chem. 2014; 5017
    • 8d Li Z, Hong J, Weng L, Zhou X. Tetrahedron 2012; 68: 1552
    • 8e Sperança A, Godoi B, Pinton S, Back DF, Menezes PH, Zeni G. J. Org. Chem. 2011; 76: 6789
    • 8f Yao T, Larock RC. J. Org. Chem. 2003; 68: 5936
    • 9a Li X, Zhang B, Yu Z, Zhang D, Shi H, Xu L, Du Y. Synthesis 2022; 54: 1375
    • 9b Li X, Wang Y, Ouyang Y, Yu Z, Zhang B, Zhang J, Shi H, Zuilhof H, Du Y. J. Org. Chem. 2021; 86: 9490
    • 9c Gao W.-C, Liu T, Cheng Y.-F, Chang H.-H, Li X, Zhou R, Wei W.-L, Qiao Y. J. Org. Chem. 2017; 82: 13459
    • 10a Zhang N, Zuo H, Xu C, Pan J, Sun J, Guo C. Chin. Chem. Lett. 2020; 31: 337
    • 10b Cui H, Wei W, Yang D, Zhang J, Xu Z, Wen J, Wang H. RSC Adv. 2015; 5: 84657
    • 10c Qian P.-C, Liu Y, Song R.-J, Xiang J.-N, Li J.-H. Synlett 2015; 26: 1213
    • 11a Mukherjee N, Chatterjee T. J. Org. Chem. 2021; 86: 7881
    • 11b Mukherjee N, Chatterjee T. Green Chem. 2021; 23: 10006
    • 11c Ma T, Bian M, Lin X, Yang Z, Yang X, Duan J, Zhu N, Liu C, Fang Z, Guo K. ChemPhotoChem 2022; 6: e202200208
    • 11d Hu B.-L, Pi S.-S, Qian P.-C, Li J.-H, Zhang X.-G. J. Org. Chem. 2013; 78: 1300
    • 11e Grimaldi TB, Lutz G, Back DF, Zeni G. Org. Biomol. Chem. 2016; 14: 10415
    • 11f Yao T, Campo MA, Larock RC. J. Org. Chem. 2005; 70: 3511
    • 12a Liang Y, Ji J, Zhang X, Jiang Q, Luo J, Zhao X. Angew. Chem. Int. Ed. 2020; 59: 4959
    • 12b Zhang Z, He P, Du H, Xu J, Li P. J. Org. Chem. 2019; 84: 4517
    • 12c Yang Z.-J, Hu B.-L, Deng C.-L, Zhang X.-G. Adv. Synth. Catal. 2014; 356: 1962
    • 12d Zhang X.-S, Jiao J.-Y, Zhang X.-H, Hu B.-L, Zhang X.-G. J. Org. Chem. 2016; 81: 5710
    • 12e Zhou J, Zhang G.-L, Zou J.-P, Zhang W. Eur. J. Org. Chem. 2011; 3412
    • 12f Jiang Q, Li H, Zhao X. Org. Lett. 2021; 23: 8777
    • 13a Csupor D, Kurtán T, Vollár M, Kúsz N, Kövér KE, Mándi A, Szűcs P, Marschall M, Senobar Tahaei SA, Zupkó I, Hohmann J. J. Nat. Prod. 2020; 83: 268
    • 13b Zhou D, Chen G, Ma Y.-P, Wang C.-G, Lin B, Yang Y.-Q, Li W, Koike K, Hou Y, Li N. J. Nat. Prod. 2019; 82: 2238
    • 13c Tóth B, Hohmann J, Vasas A. J. Nat. Prod. 2018; 81: 661
    • 13d Wang K, Hu Y, Liu Y, Mi N, Fan Z, Liu Y, Wang Q. J. Agric. Food Chem. 2010; 58: 12337
    • 13e Kovács A, Vasas A, Hohmann J. Phytochemistry 2008; 69: 1084
    • 14a Liu K.-J, Deng J.-H, Yang J, Gong S.-F, Lin Y.-W, He J.-Y, Cao Z, He W.-M. Green Chem. 2020; 22: 433
    • 14b Gayakwad EM, Patil VV, Shankarling GS. New J. Chem. 2016; 40: 223
    • 14c Bayat A, Shakourian-Fard M, Ehyaei N, Hashemi MM. RSC Adv. 2014; 4: 44274
    • 14d Yu B, Liu A.-H, He L.-N, Li B, Diao Z.-F, Li Y.-N. Green Chem. 2012; 14: 957
    • 14e Cravotto G, Garella D, Carnaroglio D, Gaudino EC, Rosati O. Chem. Commun. 2012; 48: 11632
    • 15a Cossu S, De Lucchi O, Peluso P, Volpicelli R. Synth. Commun. 2001; 31: 27
    • 15b Capozzi G, Caristi C, Lucchini V, Modena G. J. Chem. Soc., Perkin Trans. 1 1982; 2197
  • 16 Sun H, Huang X.-C, Yao Z.-X, Su H. Synlett 2022; 33: 1539
  • 17 Song M, Hu Q, Li Z.-Y, Sun X, Yang K. Chin. Chem. Lett. 2022; 33: 4269
  • 18 Ratcliffe CT, Shreeve JM. Inorg. Synth. 1968; 11: 194
    • 19a Yadav JS, Subba Reddy BV, Jain R, Baishya G. Tetrahedron Lett. 2008; 49: 3015
    • 19b Schlosser KM, Krasutsky AP, Hamilton HW, Reed JE, Sexton K. Org. Lett. 2004; 6: 819
    • 20a Fındık V, Varinca BT, Degirmenci I, Sag Erdem S. J. Phys. Chem. A 2021; 125: 3556
    • 20b Zhou S.-F, Pan X.-Q, Zhou Z.-H, Shoberu A, Zhang P.-Z, Zou J.-P. J. Org. Chem. 2015; 80: 5348