Synthesis 2024; 56(03): 496-506
DOI: 10.1055/a-2183-0262
paper

Photo-Induced Electrophilic Aromatic Substitution of Ferric Acyl Nitrene

Ming Hou
,
Zhide Zhang
,
Xiaojing Lai
,
Qianshou Zong
,
Miaofeng Ren
,
Tianwen Bai
,
Guanyinsheng Qiu
Financial support from the Natural Science Foundation of Zhejiang Province (LY22B020010) is gratefully acknowledged.


Abstract

A photo-induced intramolecular electrophilic aromatic substitution (SEAr) of N-acyloxyamides using FeCl3 in 1,4-dioxane is reported for the synthesis of biologically interesting benzoxazin-3(4H)-ones. It is believed that irradiation with a blue LED facilitates the reaction, serving as a source of energy. The SEAr reaction pathway is ascribed to the electronic effects present in the aryl ring of the substrates. The reaction is also applicable for the synthesis of useful scaffolds possessing a quinolin-2-one core, such as an anticancer reagent and analogues of brexipiprazole and cilostamide.

Supporting Information



Publication History

Received: 29 August 2023

Accepted after revision: 27 September 2023

Accepted Manuscript online:
27 September 2023

Article published online:
20 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Saptal VB, Ruta V, Bajada MA, Vilé G. Angew. Chem. Int. Ed. 2023; 62: e202219306
    • 1b Green N, Xu J, Sutherland J. J. Am. Chem. Soc. 2021; 143: 7219
    • 1c Thomas W, Pronin S. Acc. Chem. Res. 2021; 54: 1347

      For selected reviews on precise chemistry, see:
    • 2a Rej S, Chatani N. Angew. Chem. Int. Ed. 2022; 61: e202209539
    • 2b Zhang Q, Tong S, Wang M. Acc. Chem. Res. 2022; 55: 2796
    • 2c Rodriguez D, Gonzale-Bello C. Bioorg. Med. Chem. Lett. 2023; 87: 129282
    • 2d Niu W, Ma J, Feng X. Acc. Chem. Res. 2022; 55: 3322
    • 2e Mitchell S, Perez-Ramirez J. Nat. Rev. Mater. 2021; 6: 969
    • 2f Gao P, Pu M, Chen Q, Zhu H. Catalysts 2021; 11: 1050

      For selected reviews, see:
    • 3a Ye C, Meggers E. Acc. Chem. Res. 2023; 56: 1128
    • 3b Yang X, Liu X, Wang L. Chin. J. Org. Chem. 2023; 43: 914
    • 3c Gao Y, Li H, Zhao Y, Hu X.-Q. Chem. Commun. 2023; 59: 1889
    • 3d Lee D, Soni V, Cho E. Acc. Chem. Res. 2022; 55: 2526
    • 3e Du B, Chan C, Au C, Yu W.-Y. Acc. Chem. Res. 2022; 55: 2123
    • 3f Hong K, Huang J, Yao M, Xu X. Chin. J. Org. Chem. 2022; 42: 344
    • 3g Roose TR, Verdoorn DS, Mampuys P, Ruijter E, Maes BU. W, Orru RV. Chem. Soc. Rev. 2022; 51: 5842
    • 3h Ren M, Wang Y.-C, Ren S, Huang K, Liu J, Qiu G. ChemCatChem 2022; 14: e202200008
    • 3i Liu W, Choi I, Zerull EE, Schomaker JM. ACS Catal. 2022; 12: 5527
    • 3j van Vliet KM, de Bruin B. ACS Catal. 2020; 10: 4751

      For selected examples, see:
    • 4a Atkin L, Priebbenow D. Angew. Chem. Int. Ed. 2023; 62: e202302175
    • 4b Fanourakis A, Hodson N, Lit A, Phipps R. J. Am. Chem. Soc. 2023; 145: 7516
    • 4c Liu Y, Shing K.-P, Lo VK.-Y, Che C.-M. ACS Catal. 2023; 13: 1103
    • 4d Khatua H, Das S, Patra S, Das SK, Roy S, Chattopadhyay B. J. Am. Chem. Soc. 2022; 144: 21858
    • 4e Empel C, Koenigs R. Chem. Catal. 2022; 2: 2506
    • 4f Wei K, Jiang M, Liang S, Yu W. Synthesis 2022; 54: 5203
    • 4g Qi T, Fang N, Huang W, Chen J, Luo Y, Xia Y. Org. Lett. 2022; 24: 5674
    • 4h Bai Z, Song F, Wang H, Cheng W, Zhu S, Huang Y, He G, Chen G. CCS Chem. 2022; 4: 2258
  • 5 Wei K, Liang S, Yang T, Yu W. Org. Lett. 2021; 23: 8650
    • 6a Hwang Y, Park Y, Kim YB, Kim D, Chang S. Angew. Chem. Int. Ed. 2018; 57: 13565
    • 6b Lee E, Hwang Y, Kim YB, Kim D, Chang S. J. Am. Chem. Soc. 2021; 143: 6363
    • 6c Sun W, Ling C.-H, Au C.-M, Yu W.-Y. Org. Lett. 2021; 23: 3310
    • 6d Tian X, Li X, Duan S, Du Y, Liu T, Fang Y, Chen W, Zhang H, Li M, Yang X. Adv. Synth. Catal. 2021; 363: 1050
    • 7a Lee J, Kang B, Kim D, Lee J, Chang S. J. Am. Chem. Soc. 2021; 143: 18406
    • 7b Yu J.-S, Espinosa M, Noda H, Shibasaki M. J. Am. Chem. Soc. 2019; 141: 10530
    • 8a Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. Chem. Rev. 2022; 122: 1485
    • 8b Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
    • 8c Dou Q, Wang T, Fang L, Zhai H, Cheng B. Chin. J. Org. Chem. 2023; 43: 1386

      For selected reviews, see:
    • 9a Chen J, Song W, Lee Y, Nam W, Wang B. Coord. Chem. Rev. 2023; 477: 214945
    • 9b Yang Y, Arnold F. Acc. Chem. Res. 2021; 54: 1209
    • 9c Liu Y, You T, Wang H, Tang Z, Zhou C, Che C.-M. Chem. Soc. Rev. 2020; 49: 5310

      For selected examples, see:
    • 10a Mai B, Neris N, Yang Y, Liu P. J. Am. Chem. Soc. 2022; 144: 11215
    • 10b Tang J, Yu X, Yamamoto Y, Bao M. ACS Catal. 2021; 11: 13955
  • 11 Ren M, Yang X, Lai X, Liu J, Zhou H, Qiu G. Mol. Catal. 2022; 528: 112413
    • 12a Zhang Z, Deng Y, Hou M, Lai X, Guan M, Zhang F, Qiu G. Chem. Commun. 2022; 58: 13644
    • 12b Hou M, Zhang Z, Lai X, Zong Q, Jiang X, Guan M, Qi R, Qiu G. Org. Lett. 2022; 24: 4114
    • 12c Lai X, Liu J, Wang Y, Qiu G. Chem. Commun. 2021; 57: 2077
    • 12d Liu J, Ren M, Lai X, Qiu G. Chem. Commun. 2021; 57: 4259

      For selected examples, see:
    • 13a Bindl D, Heinemann E, Mandal PK, Huc I. Chem. Commun. 2021; 57: 5662
    • 13b Nagalingam V, Sreenivasulu R, Madhavarao N, Dittakavi R, Mannam K. J. Chem. Sci. 2020; 132: 90
    • 13c Chen D, Shen G, Bao W. Org. Biomol. Chem. 2009; 7: 4067
  • 14 Prasanthi AV. G, Begum S, Kumar H, Tiwari SK, Singh R. ACS Catal. 2018; 8: 8369
  • 15 Capelini C, de Souza KR, Barbosa JM. C, Salomão K, Sales PA. Jr, Murta SM. F, Wardell SM. S. V, Wardell JL, da Silva EF, Carvalho SA. Med. Chem. Res. 2021; 30: 1703
  • 16 Hong SY, Park Y, Hwang Y, Kim YB, Baik M.-H, Chang S. Science 2018; 359: 1016
  • 17 Ramesh C, Rama Raju B, Kavala V, Kuo C.-W, Yao C.-F. Tetrahedron 2011; 67: 1187
  • 18 Wesenberg LJ, Herold S, Shimizu A, Yoshida J.-i, Waldvogel SR. Chem. Eur. J. 2017; 23: 12096
  • 19 Xu Z, Li K, Zhai R, Liang T, Gui X, Zhang R. RSC Adv. 2017; 7: 51972
  • 20 Tian C, Yao X, Ji W, Wang Q, An G, Li G. Eur. J. Org. Chem. 2018; 5972
  • 21 Spinks D, Smith V, Thompson S, Robinson DA, Luksch T, Smith A, Torrie LS, McElroy S, Stojanovski L, Norval S, Collie IT, Hallyburton I, Rao B, Brand S, Brenk R, Frearson JA, Read KD, Wyatt PG, Gilbert IH. ChemMedChem 2015; 10: 1821
  • 22 Gangloff AR, Brown J, de Jong R, Dougan DR, Grimshaw CE, Hixon M, Jennings A, Kamran R, Kiryanov A, O’Connell S, Taylor E, Vu P. Bioorg. Med. Chem. Lett. 2013; 23: 4501
  • 23 Chandgude AL, Dömling A. Eur. J. Org. Chem. 2016; 2383
  • 24 Seyedi SM, Sadeghian H, Arghiani Z. Heterocycl. Commun. 2008; 14: 183
  • 25 Britschgi A, Dey F, Goergler A, Kusznir EA, Norcross R, Wichert MA. WO2019043208, 2019
  • 26 Zhang F.-Y, Lan X.-B, Xu C, Yao H.-G, Li T, Liu F.-S. Org. Chem. Front. 2019; 6: 3292