Synlett 2023; 34(09): 1019-1022
DOI: 10.1055/a-2024-4595
letter
Published as part of the Special Edition Thieme Chemistry Journals Awardees 2022

[3,3]-Rearrangements of N-Oxyindoles

Kashif Ali
,
Milan Bera
,
Eun Jin Cho
We are grateful for the support provided by a Chung-Ang University Young Scientist Scholarship for K. A. in 2022 and for support by the National Research Foundation of Korea (NRF-2020R1A2C2009636).


Abstract

The concerted Ag-catalyzed rearrangement of N-indolyl carbonates and esters to afford 3-oxyindole derivatives with broad functional-group compatibility is presented. In addition, this concerted [3,3]-rearrangement approach was expanded to the synthesis of phosphonate and sulfonamide derivatives without the use of an Ag catalyst. Control experiments suggested that no radical pathway is involved at any stage of the rearrangement process.

Supporting Information



Publication History

Received: 22 November 2022

Accepted after revision: 01 February 2023

Accepted Manuscript online:
01 February 2023

Article published online:
23 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Tabolin AA, Ioffe SL. Chem. Rev. 2014; 114: 5426
    • 1b Nakamura I, Terada M. Tetrahedron Lett. 2019; 60: 689
    • 2a Porzelle A, Woodrow MD, Tomkinson NC. O. Org. Lett. 2010; 12: 812
    • 2b Porzelle A, Woodrow MD, Tomkinson NC. O. Eur. J. Org. Chem. 2008; 5135
    • 3a Nakamura I, Jo T, Ishida Y, Tashiro H, Terada M. Org. Lett. 2017; 19: 3059
    • 3b Ishida Y, Nakamura I, Terada M. J. Am. Chem. Soc. 2018; 140: 8629
    • 3c Fang Y.-Q, Dang L. Org. Lett. 2020; 22: 9178
  • 4 Nakamura I, Owada M, Jo T, Terada M. Org. Lett. 2017; 19: 2194
  • 5 Wu Q, Yan D, Chen Y, Wang T, Xiong F, Wei W, Lu Y, Sun W.-Y, Li JJ, Zhao J. Nat. Commun. 2017; 8: 14227
  • 6 Nagayoshi T, Saeki S, Hamana M. Heterocycles 1977; 6: 1666
  • 7 Bera M, Hwang HS, Um T.-W, Oh SM, Shin S, Cho EJ. Org. Lett. 2022; 24: 1774
  • 8 For the reactions of N-enoxybenzotriazoles, see: Nguyen QH, Hwang HS, Cho EJ, Shin S. ACS Catal. 2022; 12: 8833
    • 9a Bera M, Lee DS, Cho EJ. Trends Chem. 2021; 3: 877
    • 9b Lee DS, Soni VK, Cho EJ. Acc. Chem. Res. 2022; 55: 2526
    • 10a Iwaki T, Yamada F, Funaki S, Somei M. Heterocycles 2005; 65: 1811
    • 10b Yoshino K, Yamada F, Noguchi K, Kusuno K, Somei M. Heterocycles 2019; 98: 1384
    • 11a Yamamoto Y. J. Org. Chem. 2007; 72: 7817
    • 11b Wang C, Xi Z. Chem. Soc. Rev. 2007; 36: 1395
    • 11c Àlvarez-Corral M, Muñoz-Dorado M, Rodríguez-García I. Chem. Rev. 2008; 108: 3174

      For examples of Lewis acid promoted N–O bond cleavages, see:
    • 12a Miyoshi T, Sato S, Tanaka H, Hasegawa C, Ueda M, Miyata O. Tetrahedron Lett. 2012; 53: 4188
    • 12b Naumovich YA, Buckland VE, Sen’ko DA, Nelyubina YV, Khoroshutina YA, Sukhorukov AY, Ioffe SL. Org. Biomol. Chem. 2016; 14: 3963
  • 13 Liu X, Pei J, Gao Z, Gao H. Org. Lett. 2022; 24: 7690
  • 14 The reaction products were analyzed by GC-MS spectrometry. Please see the Supporting Information for details.
  • 15 Represented procedure: Synthesis of ethyl (2-phenyl-1H-indol-3-yl) carbonate (2a); An oven-dried An oven-dried 10-mL resealable reaction tube equipped with a stirrer bar was charged with carbonate 1a (56 mg, 0.2 mmol) and AgOTf (10 mol%, 5 mg). The tube was then evacuated and refilled with argon twice. DCE (0.1 M, 2 mL) was added under an argon counterflow, and the mixture was stirred at 40 °C until the reaction was complete (TLC, ~12 h). The crude mixture was concentrated under reduced pressure and purified by flash column chromatography [silica gel, hexanes–EtOAc (4:1)] to give a yellowish liquid 2a, yield: 44 mg (79%). 1H NMR (600 MHz, CDCl3): δ = 8.02 (br s, 1 H), 7.67 (dd, J = 8.4, 1.1 Hz, 2 H), 7.50 (dd, J = 7.9, 1.0 Hz, 1 H), 7.46 (dd, J = 8.4, 7.8 Hz, 2 H), 7.34 (tt, J = 7.8, 1.1 Hz, 1 H), 7.33 (dd, J = 8.0, 1.0 Hz, 1 H), 7.21 (ddd, J = 8.0, 7.2, 1.0 Hz, 1 H), 7.15 (ddd, J = 7.9, 7.2, 1.0 Hz, 1 H), 4.34 (q, J = 7.1 Hz, 2 H), 1.39 (t, J = 7.1 Hz, 3 H). 13C NMR (151 MHz, CDCl3): δ = 153.8, 133.6, 130.6, 129.3, 128.1, 127.9, 126.4, 126.3, 123.4, 122.2, 120.8, 117.8, 111.6, 65.4, 14.5.