Synlett 2022; 33(18): 1819-1825
DOI: 10.1055/a-1961-6102
cluster
Development and Applications of Novel Ligands/Catalysts and Mechanistic Studies on Catalysis

Catalytic Enantioselective Dihalogenation of Alkenes

Jia-Wei Dong
a   School of Pharmacy, Henan University, 379 Mingli Road, Zhengzhou 475000, P. R. of China
,
Ren-Fei Cao
b   School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China
,
b   School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China
› Author Affiliations
This research was supported by the China Postdoctoral Science Foundation (2020M682280). We also thank the National Natural Science Foundation of China (NSFC, grant nos. 22071149 and 21871178), and the Science and Technology Commission of Shanghai Municipality (STCSM, grant no. 19JC1430100) for financial support. This research was also supported by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.


Abstract

Vicinal dihalides not only emerge as reactive intermediates in synthetic organic chemistry, but also are extensively existing in bioactive marine natural products. The dihalogenation of alkenes is the most direct and effective method for the synthesis of vicinal dihalides. Because there is always an exchange process between the chiral haloniums and the unreacted olefins to cause racemization, the development of catalytic enantioselective dihalogenation of alkenes is of great difficulty. Recently, great progress has been made in catalytic asymmetric manner. However, there is a lack of related review of discussions of the mechanisms and reaction systems. This review is aimed at summarizing enantioselective dihalogenation of alkenes, including 1,2-dichlorination, 1,2-dibromination, and 1,2-difluorination, which is expected to encourage more researchers to participate in this field.

1 Introduction

2 Enantioselective 1,2-Dichlorination and 1,2-Dibromination of Alkenes

2.1 Chiral-Boron-Complex-Promoted Enantioselective 1,2-Dichlorination

2.2 Organocatalytic Asymmetric 1,2-Dichlorination and 1,2-Dibromination

2.3 Chiral-Titanium-Complex-Catalyzed 1,2-Dihalogenation

3 Chiral-Iodide-Catalyzed Enantioselective Oxidative 1,2-Difluorination

4 Summary and Outlook



Publication History

Received: 02 July 2022

Accepted after revision: 14 October 2022

Accepted Manuscript online:
14 October 2022

Article published online:
24 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gribble GW. Naturally Occurring Organohalogen Compounds – A Comprehensive Survey . Progress in the Chemistry of Organic Natural Products, Vol. 68. Herz W, Kirby GW, Moore RE, Steglich W, Tamm C. Springer; Wien: 1996. DOI: DOI: 10.1007/978-3-7091-6887-5_1
    • 1b Balard A.-J. Archiv Gesammte Naturl. 1826; 4: 231
    • 2a Chung W.-j, Vanderwal CD. Angew. Chem. Int. Ed. 2016; 55: 4396
    • 2b Saikia I, Borah AJ, Phukan P. Chem. Rev. 2016; 116: 6837
    • 2c Doobary S, Lennox AJ. J. Synlett 2020; 31: 1333

      For selected reviews, see:
    • 3a Landry ML, Burns NZ. Acc. Chem. Res. 2018; 51: 1260
    • 3b Bock J, Guria S, Wedek V, Hennecke U. Chem. Eur. J. 2021; 27: 4517
  • 4 He T, Zeng X. Chin. J. Org. Chem. 2017; 37: 798
  • 5 Cresswell AJ, Eey ST.-C, Denmark SE. Angew. Chem. Int. Ed. 2015; 54: 15642
    • 6a Nicolaou KC, Simmons NL, Ying Y, Heretsch PM, Chen JS. J. Am. Chem. Soc. 2011; 133: 8134
    • 6b Sarie JC, Neufeld J, Daniliuc CG, Gilmour R. ACS Catal. 2019; 9: 7232
  • 7 Snyder SA, Tang Z.-Y, Gupta R. J. Am. Chem. Soc. 2009; 131: 5744

    • A strategy to create asymmetric environment on substrate using cyclodextrins etc. was reported by Tanaka and co-workers from 1983 on. Here we won’t go into too much detail. See:
    • 8a Tanaka Y, Sakuraba H, Nakanishi H. J. Chem. Soc., Chem. Commun. 1983; 947
    • 8b Tanaka K, Shiraishi R, Toda F. J. Chem. Soc., Perkin Trans. 1 1999; 3069
  • 9 Snyder SA, Treitler DS, Brucks AP. J. Am. Chem. Soc. 2010; 132: 14303
  • 10 Brucks AP, Treitler DS, Liu S.-A, Snyder SA. Synthesis 2013; 45: 1886
    • 11a Gilbert BB, Eey ST.-C, Ryabchuk P, Garry O, Denmark SE. Tetrahedron 2019; 75: 4086
    • 11b Cresswell AJ, Eey ST.-C, Denmark SE. Nat. Chem. 2015; 7: 146
  • 12 Soltanzadeh B, Jaganathan A, Yi Y, Yi H, Staples RJ, Borhan B. J. Am. Chem. Soc. 2017; 139: 2132
  • 13 Wedek V, Van Lommel R, Daniliuc CG, De Proft F, Hennecke U. Angew. Chem. Int. Ed. 2019; 58: 9239
    • 14a Brown RS, Nagorski RW, Bennet AJ, McClung RE. D, Aarts GH. M, Klobukowski M, McDonald R, Santarsiero BD. J. Am. Chem. Soc. 1994; 116: 2448
    • 14b Bennet AJ, Brown RS, McClung RE. D, Klobukowski M, Aarts GH. M, Santarsiero BD, Bellucci G, Bianchini R. J. Am. Chem. Soc. 1991; 113: 8532
    • 14c Denmark SE, Burk MT, Hoover AJ. J. Am. Chem. Soc. 2010; 132: 1232
  • 15 Lubaev AE, Rathnayake MD, Eze F, Bayeh-Romero L. J. Am. Chem. Soc. 2022; 144: 13294
  • 16 Wu S, Xiang S.-H, Li S, Ding W.-Y, Zhang L, Jiang P.-Y, Zhou Z.-A, Tan B. Nat. Catal. 2021; 4: 692
    • 17a Hu DX, Shibuya GM, Burns NZ. J. Am. Chem. Soc. 2013; 135: 12960
    • 17b Hu DX, Seidl FJ, Bucher C, Burns NZ. J. Am. Chem. Soc. 2015; 137: 3795
    • 17c Bucher C, Deans RM, Burns NZ. J. Am. Chem. Soc. 2015; 137: 12784
    • 17d Landry ML, Hu DX, McKenna GM, Burns NZ. J. Am. Chem. Soc. 2016; 138: 5150
    • 18a Banik SM, Medley JW, Jacobsen EN. Science 2016; 353: 51
    • 18b Banik SM, Medley JW, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 5000
    • 18c Zhou B, Haj MK, Jacobsen EN, Houk KN, Xue X.-S. J. Am. Chem. Soc. 2018; 140: 15206
    • 18d Haj MK, Banik SM, Jacobsen EN. Org. Lett. 2019; 21: 4919
  • 19 Scheidt F, Schäfer M, Sarie JC, Daniliuc CG, Molloy JJ, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 16431
    • 20a Motagamwala A.-H, Dumesic J.-A. Chem. Rev. 2021; 121: 1049
    • 20b Zhang L, Chen J, He M, Su X. Exploration 2022; 2: 20210265
    • 20c Pan T, Wang Y, Xue X, Zhang C. Exploration 2022; 2: 20210095