Synlett 2023; 34(06): 667-672
DOI: 10.1055/a-1934-1189
cluster
Chemical Synthesis and Catalysis in India

Use of Polymer-Supported 4-(N,N-Dimethylamino)pyridine in a Formal Conjugate Addition/Elimination Mediated by an N-Ylide Generated In Situ for the Construction of Highly Functionalized Itaconimides/Alkenes

Suman K. Saha
,
Anshul Jain
,
Akanksha Kumari
,
Tshering Sangmo Bhutia
,
Chanchal Agrawat
,
This work was financially supported by the Science and Engineering Research Board (SERB), India, (CRG/2020/001940) and the Council of Scientific and Industrial Research (CSIR), India, (02(0424)/21/EMR-II).


Abstract

A simple, mild, and metal-free cascade reaction has been developed for the construction of highly functionalized olefins. The approach relies on the initial formation of [3+2]-cycloadducts from a pyridinium ylide generated in situ from polymer-bound DMAP (PS-DMAP) with an N-substituted maleimide or an α,β-unsaturated β-keto ester. The cycloadduct decomposes to regenerate supported DMAP and yield a functionalized itaconimide or olefin. The method has a broad substrate scope. The alkene product has been further transformed into trisubstituted furan. PS-DMAP could be reused for five cycles.

Supporting Information



Publication History

Received: 30 May 2022

Accepted after revision: 30 August 2022

Accepted Manuscript online:
30 August 2022

Article published online:
28 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Jiang K, Chen Y.-C. Tetrahedron Lett. 2014; 55: 2049
    • 1b Roiser L, Zielke K, Waser M. Asian J. Org. Chem. 2018; 7: 852
    • 2a Hui J, Ma Y, Zhao J, Cao H. Org. Biomol. Chem. 2021; 19: 10245
    • 2b Allgäuer DS, Mayer P, Mayr H. J. Am. Chem. Soc. 2013; 135: 15216
    • 2c Sar S, Guha S, Prabakar T, Maiti D, Sen S. J. Org. Chem. 2021; 86: 11736
    • 2d Jung Y, Hong JE, Kwak J.-H, Park Y. J. Org. Chem. 2021; 86: 6343
    • 2e Zhang JQ, Hu D, Song J, Ren H. J. Org. Chem. 2021; 86: 4646
    • 2f Allgäuer SD, Mayr H. Eur. J. Org. Chem. 2014; 2956
    • 3a Roiser L, Zielke K, Waser M. Synthesis 2018; 50: 4047
    • 3b Waser M, Herchl R, Müller N. Chem. Commun. 2011; 47: 2170
    • 3c Yadav LD. S, Kapoor R, Garima Garima. Synlett 2009; 3123
    • 3d Robiette R, Conza M, Aggarwal VK. Org. Biomol. Chem. 2006; 4: 621
    • 3e Xu F.-S, Yan C, Sun J, Yan C.-G. New J. Chem. 2021; 45: 19666
    • 3f Quan B.-X, Zhuo J.-R, Zhao J.-Q, Zhang M.-L, Zhou M.-Q, Zhang X.-M, Yuan W.-C. Org. Biomol. Chem. 2020; 18: 1886
    • 3g Dong S, Fu X, Xu X. Asian J. Org. Chem. 2020; 9: 1133
    • 4a Worgull D, Öhler L, Strache JP, Friedrichs T, Ullrich P. Eur. J. Org. Chem. 2017; 6077
    • 4b Drennhaus T, Öhler L, Djalali S, Höfmann S, Müller C, Pietruszka J, Worgull D. Adv. Synth. Catal. 2020; 362: 2385
    • 4c Roiser L, Waser M. Org. Lett. 2017; 19: 2338
    • 4d Pichler M, Novacek J, Robiette R, Poscher V, Himmelsbach M, Monkowius U, Müller N, Waser M. Org. Biomol. Chem. 2015; 13: 2092
    • 4e Papageorgiou CD, Cubillo de Dios MA, Ley SV, Gaunt MJ. Angew. Chem. Int. Ed. 2004; 43: 4641
    • 4f Papageorgiou CD, Ley SV, Gaunt MJ. Angew. Chem. Int. Ed. 2003; 42: 828
    • 4g Johansson CC, Bremeyer N, Ley SV, Owen DR, Smith SC, Gaunt MJ. Angew. Chem. Int. Ed. 2006; 45: 6024
    • 5a Tsuge O, Kanemasa S, Takenaka S, Kuraoka S. Chem. Lett. 1984; 465
    • 5b Otohiko T, Shuji K, Shigeori T. Bull. Chem. Soc. Jpn. 1987; 60: 1489
  • 6 Xu J, Fu X, Low R, Goh Y.-P, Jiang Z, Tan C.-H. Chem. Commun. 2008; 5526-5528
    • 7a Benaglia M, Puglisi A, Cozzi F. Chem. Rev. 2003; 103: 3401
    • 7b Porta R, Benaglia M, Puglisi A. Org. Process Res. Dev. 2016; 20: 2
    • 7c Debruyne M, Van Speybroeck V, Van Der Voort P, Stevens CV. Green Chem. 2021; 23: 7361
    • 8a Tilliet M, Lundgren S, Moberg C, Levacher V. Adv. Synth. Catal. 2007; 349: 2079
    • 8b Lundgren S, Lutsenko S, Jönsson C, Moberg C. Org. Lett. 2003; 5: 3663
    • 8c Tsubogo T, Yamashita Y, Kobayashi S. Chem. Eur. J. 2012; 18: 13624
    • 8d Han Y, Di J.-Q, Zhao A.-D, Zhang Z.-H. Appl. Organomet. Chem. 2019; 33: p. e5172
    • 8e Senaiar RS, Young DD, Deiters A. Chem. Commun. 2006; 1313
    • 8f Weissberg A, Halak B, Portnoy M. J. Org. Chem. 2005; 70: 4556
    • 9a Kwong CK.-W, Huang R, Zhang M, Shi M, Toy PH. Chem. Eur. J. 2007; 13: 2369
    • 9b Vuluga D, Legros J, Crousse B, Bonnet-Delpon DL. Chem. Eur. J. 2010; 16: 1776
    • 9c Zhang Y, Zhang Y, Sun YL, Du X, Shi JY, Wang WD, Wang W. Chem. Eur. J. 2012; 18: 6328
    • 9d Mennenga T, Dorn J, Menzel J.-P, Ritter H. Polym. Int. 2015; 64: 1685
    • 9e Schulze JS, Brand RD, Hering JG. C, Riegger LM, Schreiner PR, Smarsly BM. ChemCatChem 2022; 14: e202101845
    • 9f Okuno Y, Isomura S, Kamakura T, Sano F, Tamahori K, Goto T, Hayashida T, Kitagawa Y, Fukuhara A, Takeda K. ChemSusChem 2015; 8: 1711
    • 9g Li B, Chen D, Zhan X, Dong W, Zhao B. Chem. Pap. 2018; 72: 1339
    • 9h Brunelli NA, Long W, Venkatasubbaiah K, Jones CW. Top. Catal. 2012; 55: 432
    • 9i Das D, Pathak G, Rokhum L. RSC Adv. 2016; 6: 104154
    • 9j Das D, Anal JM. H, Rokhum L. J. Chem. Sci. 2016; 128:  1695
    • 9k Gleeson O, Tekoriute R, Gun’ko GK, Connon JS. Chem. Eur J. 2009; 15: 5669
    • 9l Luo Y, Xie W, Huang Y, Zhang T, Yang B, Liu Y, Zhou X, Zhang J. J. Catal. 2018; 367:  264
    • 9m Qiu J, Meng F, Wang M, Huang J, Wang C, Li X, Yang G, Hua Z, Chen T. Polymer 2021; 222: 123660
  • 10 During our initial optimization of the reaction conditions, we found that a minimum of 1.8 equivalents (based on DMAP content) of PS-DMAP (~3.0 mmol/g DMAP loading; matrix crosslinked with 2% divinylbenzene) is essential for effective formation of the pyridinium salt.
  • 11 (3E)-1-Benzyl-3-(2-oxo-2-phenylethylidene)pyrrolidine-2,5-dione (4aa); Typical Procedure A mixture of α-bromoacetophenone (1a; 119.4 mg, 0.6 mmol) and PS-DMAP (240 mg, 0.72 mmol) in toluene (1 mL) was stirred at 80 °C for 8 h. After complete consumption of 1a, N-benzylmaleimide (3a;74.8 mg, 0.4 mmol) and Et3N (55.8 μL, 0.4 mmol) were added, and the mixture was stirred for a further 8 h while the progress of the reaction was monitored by TLC. The mixture was cooled to rt then glacial AcOH (0.16 mmol) was added and stirring was continued at rt for 24 h. The mixture was filtered and the filtrate was concentrated under vacuum to give a crude product that was purified by flash column chromatography [silica gel, hexane–EtOAc (5:1)] to give a yellow solid; yield: 94.0 mg (77%); mp 164–167 °C. IR (neat): 2966, 2362, 2335, 1772, 1708, 1681, 1436, 1380, 1282 cm–1. 1H NMR (500 MHz, CDCl3): δ = 8.01 (d, J = 7.4 Hz, 2 H), 7.89 (d, J = 2.2 Hz, 1 H), 7.62 (s, 1 H), 7.51 (t, J = 7.7 Hz, 2 H), 7.43 (d, J = 6.9 Hz, 2 H), 7.32–7.28 (m, 3 H), 4.80 (s, 2 H), 3.79 (d, J = 2.2 Hz, 2 H). 13C NMR (125 MHz, CDCl3) : δ = 189.45, 173.58, 169.31, 139.50, 137.09, 135.22, 133.88, 128.86, 128.85, 128.60, 128.40, 128.03, 123.17, 42.53, 34.66. HRMS (ES+): m/z [M + H]+ calcd for C19H16NO3: 306.1125; found: 306.1128.
  • 12 Ethyl (2E)-4-Oxo-2-(2-oxo-2-phenylethyl)-4-phenylbut-2-enoate (6aa): Typical Procedure A mixture of α-bromoacetophenone (1a; 119.4 mg, 0.6 mmol) and PS-DMAP (240 mg, 0.72 mmol) in toluene (1 mL) was stirred at 80 °C for 8 h. Keto ester 5a (81.7 mg, 0.4 mmol) and Et3N (55.8 μL, 0.4 mmol) were then added, and the mixture was stirred at 80 °C for 8 h then cooled to rt. Glacial AcOH (0.16 mmol) was added, and the mixture was stirred at rt for 24 h. The mixture was then filtered and the filtrate was concentrated under vacuum to give the crude product that was purified by flash column chromatography [silica gel, hexane–EtOAc (5:1)] to give a yellow liquid; yield: 100.6 mg (78%). IR (neat): 3064, 2981, 2938, 2842, 1717, 1662, 1600, 1570, 1510, 1445, 1276, 1257, 1215, 1169, 1092 cm–1. 1H NMR (500 MHz, CDCl3): δ = 8.05 (s, 1 H), 7.98 (d, J = 7.8 Hz, 4 H), 7.59–7.53 (m, 2 H), 7.49–7.43 (m, 4 H), 4.56 (s, 2 H), 4.30 (q, J = 7.1 Hz, 2 H), 1.30 (t, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 196.06, 191.73, 166.59, 139.51, 137.45, 136.64, 133.79, 133.31, 133.21, 128.85, 128.73, 128.66, 128.25, 61.95, 38.16, 14.17. HRMS (ES+): m/z [M + H]+ calcd for C20H19O4: 323.1278; found: 323.1274.
  • 13 See the Supporting Information for details.
  • 14 Ethyl 2-Benzoyl-5-phenyl-3-furoate (7aa) A vial was charged with product 6aa (128.9 mg, 0.4 mmol), K2CO3 (82.9 mg, 0.6 mmol), and I2 (10.2 mg, 0.08 mmol). Anhyd DMSO (4 mL) was added, and the mixture was stirred at 80 °C for 1.5 h. After complete consumption of 6aa, the mixture was cooled to rt and extracted with EtOAc. The organic layer was dried (Na2SO4) and purified by flash column chromatography [silica gel, hexane–EtOAc (5:1)] to give a yellow liquid; yield: 83.3 mg (65%). IR (neat): 2366, 1724, 1652, 1579, 1531, 1479, 1243, 1083 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.99–7.92 (m, 2 H), 7.76 (dd, J = 5.3, 3.3 Hz, 2 H), 7.64–7.59 (m, 1 H), 7.50 (dd, J = 10.8, 4.7 Hz, 2 H), 7.46–7.42 (m, 2 H), 7.40–7.36 (m, 1 H), 7.10 (s, 1 H), 4.12 (q, J = 7.2 Hz, 2 H), 1.08 (t, J = 7.2 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 183.83, 162.88, 156.05, 150.25, 137.48, 133.42, 129.77, 129.53, 129.12, 128.90, 128.62, 125.53, 125.03, 107.48, 61.55, 13.80. HRMS (ES+): m/z [M + H]+ calcd for C20H17O4: 321.1121; found: 321.1109.