Synlett 2022; 33(15): 1556-1562
DOI: 10.1055/a-1855-3777
letter

Construction of Successive Stereogenic Centers of ent-Kauranoid through an Oxidative Dearomatization/1,2-Shift Cascade

Yuki Imamura
,
Hikaru Mizutani
,
Masahisa Nakada
This work was financially supported in part by JSPS KAKENHI Grants Numbers JP19H02725 and JP22H02087 and by a Waseda University Grant for Special Research Projects.


Abstract

The construction of the successive stereogenic centers, including an all-carbon quaternary stereogenic center, of ent-kauranoid through an oxidative dearomatization/1,2-shift cascade is described. The developed cascade reaction of a substrate bearing a trans-2-(p-methoxyphenyl)vinyl group as the migrating group afforded the desired product in 83% yield. The 1,2-shift in the cascade is strongly affected by a stereoelectronic effect. The X-ray crystal structure of a compound bearing four successive stereogenic centers in the fused-ring moiety of ent-kauranoid diterpene, which was prepared by the oxidative dearomatization/1,2-shift cascade and subsequent stereoselective transformations, is also reported.

Supporting Information



Publication History

Received: 23 April 2022

Accepted after revision: 18 May 2022

Accepted Manuscript online:
18 May 2022

Article published online:
15 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Sun H.-D, Huang S.-X, Han Q.-B. Nat. Prod. Rep. 2006; 23: 673
    • 1b Liu M, Wang W.-G, Sun H.-D, Pu J.-X. Nat. Prod. Rep. 2017; 34: 1090
  • 3 Wang Z, Xun Y. Yunnan Zhiwu Yanjiu 1982; 4: 407
    • 4a Kupchan SM, Britton RW, Ziegler MF, Sigel CW. J. Org. Chem. 1973; 38: 178
    • 4b Kupchan SM, Britton RW, Lacadie JA, Ziegler MF, Sigel CW. J. Org. Chem. 1975; 40: 648
    • 5a Guérard KC, Guérinot A, Bouchard-Aubin C, Ménard M.-A, Lepage M, Beaulieu MA, Canesi S. J. Org. Chem. 2012; 77: 2121
    • 5b Guérard KC, Sabot C, Beaulieu MA, Giroux MA, Canesi S. Tetrahedron 2010; 66: 5893
    • 5c Guérard KC, Chapelle C, Giroux MA, Sabot C, Beaulieu MA, Achache N, Canesi S. Org. Lett. 2009; 11: 4756

      For our recent efforts towards constructing all-carbon quaternary stereogenic centers, see:
    • 6a Hosoya Y, Yasukochi H, Mizoguchi K, Nakada M. Heterocycles 2022; 104: 655
    • 6b Hosoya Y, Mizoguchi K, Yasukochi H, Nakada M. Synlett 2022; 33: 495
    • 6c Hosoya Y, Kobayashi I, Mizoguchi K, Nakada M. Org. Lett. 2019; 21: 8280
    • 6d Sato Y, Hosoya Y, Kobayashi I, Adachi K, Nakada M. Asian J. Org. Chem. 2019; 8:  1033
    • 6e Fujii T, Oki Y, Nakada M. Tetrahedron Lett. 2018; 59: 882

      For our recent efforts towards constructing trans-ring junctions of polycyclic ring systems:
    • 7a Sekita H, Adachi K, Kobayashi I, Sato Y, Nakada M. Org. Lett. 2017; 19: 2390
    • 7b Usui K, Suzuki T, Nakada MA. Tetrahedron Lett. 2015; 56: 1247
    • 7c Fujii T, Nakada M. Tetrahedron Lett. 2014; 55: 1597
    • 7d Fujii T, Orimoto K, Nakada M. Tetrahedron Lett. 2014; 55: 1100
  • 8 Liu W, Li H, Cai P.-J, Wang Z, Yu Z.-X, Lei X. Angew. Chem. Int. Ed. 2016; 55: 3112
  • 9 Cai G, Zhou Z, Wu W, Yao B, Zhang S, Li X. Org. Biomol. Chem. 2016; 14: 8702
  • 10 Dohi T, Yamaoka N, Kita Y. Tetrahedron 2010; 66: 5775
  • 11 Plourde GL. Tetrahedron Lett. 2002; 43: 3597
  • 12 He L.-Y, Schulz-Senft M, Thiedemann B, Linshoeft J, Gates JP, Staubitz A. Eur. J. Org. Chem. 2015; 2498
  • 13 Compound 2c Pb(OAc)4 (661 mg, 2.0 equiv) was added to a solution of 1c (293 mg, 1.0 equiv, 0.745 mmol) in dry DCM (4 mL) and dry HFIP (4 mL) at 0 °C. The mixture was stirred for 5 min and then the reaction was quenched with sat. aq NaHCO3 (10 mL) and sat. aq Na2S2O3 (10 mL). The aqueous layer was extracted with EtOAc (3 × 10 mL), and the combined organic layer was washed with brine (1 × 20 mL), dried (Na2SO4), and concentrated under reduced pressure. The residue was purified by column chromatography [silica gel, hexane–EtOAc (10:1)] to give a pale-yellow amorphous solid; yield: 240 mg (0.615 mmol, 83%), Rf = 0.34 (hexane–EtOAc, 4:1). 1H NMR (500 MHz, CDCl3): δ = 7.26 (d, J = 9.7 Hz, 1 H), 7.21 (d, J = 8.6 Hz, 2 H), 6.85 (d, J = 8.6 Hz, 2 H), 6.38 (d, J = 1.7 Hz, 1 H), 6.30 (d, J = 16.0 Hz, 1 H), 6.15 (dd, J = 1.7, 9.7 Hz, 1 H), 5.70 (d, J = 16.0 Hz, 1 H), 3.80 (s, 3 H), 2.74 (dt, J = 13.2, 14.3 Hz, 1 H), 2.47–2.39 (m, 2 H), 2.14 (br d, J = 13.2 Hz, 1 H), 1.75–1.66 (m, 1 H), 1.65–1.60 (m, 1 H), 1.53 (dt, J = 3.4, 13.2 Hz, 1 H), 1.48 (br d, J = 13.5 Hz, 1 H), 1.18 (dt, J = 3.4, 13.8 Hz, 1 H), 1.15 (s, 3 H), 0.92 (s, 3 H), 0.81 (s, 3 H). 13C-NMR (125 MHz, CDCl3): δ = 206.0, 186.7, 170.9, 160.0, 148.1, 131.9, 128.3, 127.7, 126.4, 125.6, 124.2, 114.2, 60.4, 55.3, 43.3, 41.0, 40.7, 39.4, 35.5, 33.0, 32.8, 24.2, 21.8, 19.0. HRMS (ESI): m/z [M + H]+ calcd for C26H31O3: 391.2268; found: 391.2269.
  • 14 CCDC 1978621 contains the supplementary crystallographic data for compound 1a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures