Synlett 2022; 33(01): 57-61
DOI: 10.1055/a-1661-3152
letter

Suzuki–Miyaura Cross-Coupling Reaction with Potassium Aryltrifluoroborate in Pure Water Using Recyclable Nanoparticle Catalyst

Misa Kawase
a   Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
,
Kyosuke Matsuoka
a   Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
,
Tsutomu Shinagawa
b   Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto, Osaka, 536-8553, Japan
,
Go Hamasaka
c   Institute for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
,
Yasuhiro Uozumi
c   Institute for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
,
Osamu Shimomura
a   Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
,
a   Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
› Author Affiliations
The authors are grateful to the Nanomaterials and Microdevices Research Center (NMRC) of OIT for financial and instrumental supports. This work was supported by the Joint Studies Program of the Institute for Molecular Science.


Abstract

This paper describes the Suzuki–Miyaura cross-coupling reaction of aryl bromides with potassium aryltrifluoroborates in water catalyzed by linear polystyrene-stabilized PdO nanoparticles (PS-PdONPs). The reaction of aryl bromides having electron-withdrawing groups or electron-donating groups took place smoothly to give the corresponding coupling product in high yields. The catalyst recycles five times without significant loss of catalytic activity although a little bit increase in size of PdNPs was observed after the reaction.

Supporting Information



Publication History

Received: 26 August 2021

Accepted after revision: 04 October 2021

Accepted Manuscript online:
04 October 2021

Article published online:
26 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Vedejs E, Chapman RW, Fields SC, Lin S, Schrimpf MR. J. Org. Chem. 1995; 60: 3020

    • For recent studies on the Suzuki coupling reaction with potassium aryltrifluoroborate, see:
    • 2a Li X, Liu C, Wang L, Ye Q, Jin X, Jin Z. Org. Biomol. Chem. 2018; 16: 8719
    • 2b Barbeiro CS, Vasconcelos SN. S, de Oliveira IM, Zukerman-Schpector J, Caracelli I, Maganhi SH, Stefani HA. ChemistrySelect 2017; 2: 8173
    • 2c Gómez-Martínez M, Buxaderas E, Pastor IM, Alonso DA. J. Mol. Catal. A: Chem. 2015; 404: 1
    • 2d Liu C, Li X, Gao Z, Wang X, Jin Z. Tetrahedron 2015; 71: 3954
    • 2e Liu C, Li X, Wang X, Jin Z. Catal. Commun. 2015; 69: 81
    • 2f Yuen OY, Wong SM, Chan KF, So CM, Kwong FY. A. Synthesis 2014; 46: 2826
    • 2g Liu L, Dong Y, Pang B, Ma J. J. Org. Chem. 2014; 79: 7193
    • 2h Liu L, Dong Y, Tang N. Green Chem. 2014; 16: 2185
    • 2i Bratt E, Verho O, Johansson MJ, Bäckvall J.-E. J. Org. Chem. 2014; 79: 3946

      For recent studies on the Suzuki-type coupling reaction with potassium aryltrifluoroborate, see:
    • 3a Li X, Ma Y, Hu Q, Jiang B, Wu Q, Yuan Z. Catal. Commun. 2018; 117: 57
    • 3b Wang G, Meng M, Deng L, Cheng K, Qi C. Appl. Organomet. Chem. 2018; 32: e4203
    • 3c Chang S, Sun YB, Zhang XR, Dong LL, Zhu HY, Lai HW, Wang D. Appl. Organomet. Chem. 2018; 32: e3970
    • 3d Wei Z, Xue D, Zhang H, Guan J. Appl. Organomet. Chem. 2016; 30: 767
    • 3e Singh PP, Aithagani SK, Yadav M, Singh VP, Vishwakarma RA. J. Org. Chem. 2013; 78: 2639
    • 3f Wang Z.-Y, Ma Q.-N, Li R.-H, Shao L.-X. Org. Biomol. Chem. 2013; 11: 7899
  • 4 Yuan Y.-C, Bruneau C, Roisnel T, Gramage-Doria R. J. Org. Chem. 2019; 84: 12893
  • 5 Phillips D, Hewitt JF. M, France DJ. ACS Omega 2018; 3: 8451
    • 6a Ghosh P, Ganguly B, Perl E, Das S. Tetrahedron Lett. 2017; 58: 2751
    • 6b Zhao H, Han W. Eur. J. Org. Chem. 2016; 4279
    • 6c Wang X, Liu M, Xu L, Wang Q, Chen J, Ding J, Wu H. J. Org. Chem. 2013; 78: 5273
  • 7 Miao J, Fang P, Jagdeep S, Ge H. Org. Chem. Front. 2016; 3: 243
  • 8 Rizwan K, Karakaya I, Heitz D, Zubair M, Rasool N, Molander GA. Tetrahedron Lett. 2015; 56: 6839
  • 9 Paymode DJ, Ramana CV. J. Org. Chem. 2015; 80: 11551
  • 10 Kuriyama M, Shimazawa R, Enomoto T, Shirai R. J. Org. Chem. 2008; 73: 6939
    • 11a Cortes-Clerget M, Yu J, Kincaid JR. A, Walde P, Gallou F, Lipshutz BH. Chem. Sci. 2021; 12: 4237
    • 11b Ansari TN, Jasinski JB, Leahy DK, Handa S. JACS Au 2021; 1: 308
    • 11c Hazra S, Kaur G, Handa S. ACS Sustainable Chem. Eng. 2021; 9: 5513
    • 11d Kitanosono T, Kobayashi S. Chem. Eur. J. 2020; 26: 9408
  • 12 The recyclability of Pd/PVP has been reported. See: Wang L, Li P.-H. Chin. J. Chem. 2006; 24: 770
    • 13a Ohtaka A. Curr. Org. Chem. 2019; 23: 689
    • 13b Osako T, Ohtaka A, Uozumi Y. Catalyst Immobilization . Benaglia M, Puglisi A. Wiley-VCH; Weinheim: 2019: 325-368
  • 14 Ohtaka A, Teratani T, Fujii R, Ikeshita K, Kawashima T, Tatsumi K, Shimomura O, Nomura R. J. Org. Chem. 2011; 76: 4052
  • 15 Preparation of PS-PdONPsPd(OAc)2 (8.4 mg, 37.5 μmol), polystyrene (11.3 mg, 0.139 mmol of PS unit), and aqueous K2CO3 solution (1.5 mol/L, 3 mL) were added to a screw-capped vial (no. 1, Maruemu Co., Osaka, Japan) with a stirring bar. After stirring (1350 rpm) at 90 °C for 5 h, the reaction mixture was cooled to room temperature. After separating the solid and the aqueous solution by centrifugation, the aqueous phase was decanted. PS-PdONPs (13.3 mg) was obtained after washing with water (3 × 3.0 mL), methanol (3 × 3.0 mL), and diethyl ether (3 × 3.0 mL).
  • 16 Ohtaka A, Okagaki T, Hamasaka G, Uozumi Y, Shinagawa T, Shimomura O, Nomura R. Catalysts 2015; 5: 106
  • 17 When the reaction of 2-bromopyridine with 4-methylphenylboronic acid was performed under the same reaction conditions, the yield of coupling product was 16%.
  • 18 Mulliken charge population on ipso-carbon in PhBF3 (–0.596) calculated using DFT method (B3LYP/6-31+G** level of theory) is more positive than that in PhB(OH)3 (–0.950), indicating the aryl group in PhBF3 is less nucleophilic than that in PhB(OH)3 .
  • 19 When the aqueous phase was reused for the next catalytic reaction after removal of product and catalyst, 7% of coupling product was obtained. This result is indicating the lower amount of Pd than the detectable level in ICP analysis existed in the aqueous phase.
    • 20a Anton DR, Crabtree RH. Organometallics 1983; 2: 855
    • 20b Consorti CS, Flores FR, Dupont J. J. Am. Chem. Soc. 2005; 127: 12054
  • 21 When the aqueous phase was analyzed by ICP-OES after heating the mixture of 2-bromothiophene and PS-PdONPs under the reaction conditions, 1.0% of Pd species based on the total amount of Pd in PS-PdONPs was detected.
  • 22 The reaction in which metal leaching is considered to occur after the oxidative addition of aryl halides to metal nanoparticles will take place through the similar ‘on water then in water’ route. See: Gnad C, Abram A, Urstöger A, Weigl F, Schuster M, Köhler K. ACS Catal. 2020; 10: 6030
  • 23 The ‘in water then on water’ route has been advocated in Hiyama coupling reaction. See: Sakon A, Ii R, Hamasaka G, Uozumi Y, Shinagawa T, Shimomura O, Nomura R, Ohtaka A. Organometallics 2017; 36: 1618
  • 24 With a 0.5 mol% catalyst and a yield of 84% (1st run), TON is 1/0.005 x 0.84 = 168. Thus, total TON is 1056 (2nd-6th runs: 182, 188, 176, 172, and 170).
  • 25 Typical Procedure for the Suzuki–Miyaura Cross-Coupling Reaction PS-PdONPs (1.0 mg, 0.5 mol% of Pd based on bromobenzene), potassium p-tolyltrifluoroborate (99 mg, 0.5 mmol), bromobenzene (78.5 mg, 0.5 mmol), cesium carbonate (488.7 mg, 1.5 mmol), and 1.0 mL water were added to a screw-capped vial (no. 02, Maruemu Co., Osaka, Japan) with stirring bar. After stirring at 90 °C for 2 h, the reaction mixture was cooled to room temperature. After separating the catalyst and the aqueous phase by centrifugation, the aqueous phase was decanted. Recovered catalyst was washed with H2O (5 × 3.0 mL) and diethyl ether (5 × 3.0 mL), which were then added to the aqueous phase. The aqueous phase was extracted eight times with diethyl ether. The combined organic extracts were dried over MgSO4 and concentrated under reduced pressure. The product was analyzed by 1H NMR spectroscopy. The recovered catalyst was dried in vacuo and reused. The crude material was purified with silica gel column chromatography (hexane) to give 4-methylbiphenyl in 80% yield. (Note: The yields below are isolated yields while the yields in Table 2 are NMR yields). 4-Methylbiphenyl White solid (67 mg, 80%). 1H NMR (400 MHz, CDCl3): δ = 7.60–7.55 (m, 2 H), 7.50–7.47 (m, 2 H), 7.43–7.39 (m, 2 H), 7.33–7.29 (m, 1 H), 7.25–7.20 (m, 2 H), 2.38 (s, 3 H). 13C NMR (CDCl3): δ = 141.1, 138.3, 136.9, 129.4, 128.7, 128.7, 126.9, 21.1. CAS registry number: 644-08-6. 4,4′-Dimethylbiphenyl White solid (80 mg, 88%). 1H NMR (400 MHz, CDCl3): δ = 7.47 (d, J = 8.1 Hz, 4 H), 7.23 (d, J = 8.1 Hz, 4 H), 2.38 (s, 6 H). 13C NMR (CDCl3): δ = 138.2, 136.7, 129.4, 126.8, 21.1. CAS registry number: 613-33-2. 4-Methoxy-4′-methylbiphenyl White solid (84 mg, 85%). 1H NMR (400 MHz, CDCl3): δ = 7.51 (d, J = 9.0 Hz, 2 H), 7.45 (d, J = 8.1 Hz, 2 H), 7.22 (d, J = 8.1 Hz, 2 H), 6.96 (d, J = 9.0 Hz, 2 H), 3.84 (s, 3 H), 2.38 (s, 3 H). 13C NMR (CDCl3): δ = 158.9, 137.9, 136.3, 133.7, 129.4, 127.9, 126.6, 114.2, 55.3, 21.0. CAS registry number: 53040-92-9. 4-Acetyl-4′-methylbiphenyl White solid (92 mg, 88%). 1H NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 8.7 Hz, 2 H), 7.67 (d, J = 8.7 Hz, 2 H), 7.53 (d, J = 8.4 Hz, 2 H), 7.27 (d, J = 8.4 Hz, 2 H), 2.63 (s, 3 H), 2.41 (s, 3 H). 13C NMR (CDCl3): δ = 197.8, 145.7, 138.2, 136.9, 135.5, 129.7, 128.9, 127.1, 126.9, 26.6, 21.2. CAS registry number: 5748-38-9. 4-Methyl-4′-(trifluoromethyl)biphenyl White solid (106 mg, 90%). 1H NMR (400 MHz, CDCl3): δ = 7.67 (m, 4 H), 7.50 (d, J = 8.4 Hz, 2 H), 7.28 (d, J = 8.4 Hz, 2 H), 2.41 (s, 3 H). 13C NMR (CDCl3): δ = 144.6, 138.1, 136.8, 129.7, 129.2 (q, J = 32.3 Hz), 127.2, 127.1, 125.6 (q, J = 4.2 Hz), 124.3 (q, J = 271.7 Hz), 21.1. CAS registry number: 97067-18-0. 4-Methyl-4′-nitrobiphenyl Yellow solid (83 mg, 78%). 1H NMR (400 MHz, CDCl3): δ = 8.28 (d, J = 8.3 Hz, 2 H), 7.72 (d, J = 8.3 Hz, 2 H), 7.53 (d, J = 8.3 Hz, 2 H), 7.30 (d, J = 8.3 Hz, 2 H), 2.43 (s, 3 H). 13C NMR (CDCl3): δ = 147.5, 146.7, 139.0, 135.7, 130.2, 127.5, 127.0, 124.0, 21.1. CAS registry number: 2143-88-6. 2,4′-Dimethylbiphenyl White solid (62 mg, 68%). 1H NMR (400 MHz, CDCl3): δ = 7.25–7.20 (m, 8 H), 2.40 (s, 3 H), 2.28 (s, 3 H). 13C NMR (CDCl3): δ = 141.8, 140.0, 136.4, 135.4, 130.2, 129.8, 129.0, 128.7, 127.0, 125.7, 21.27, 20.5. CAS registry number: 611-61-0. 2,4′,6-Trimethylbiphenyl Colorless oil (47 mg, 48%). 1H NMR (400 MHz, CDCl3): δ = 7.44 (d, J = 7.7 Hz, 2 H), 7.30–7.38 (m, 3 H), 7.25 (d, J = 8.0 Hz, 2 H), 2.61 (s, 3 H), 2.28 (s, 6 H). 13C NMR (CDCl3): δ = 141.8, 138.0, 136.1, 129.0, 128.8, 126.8, 21.1, 20.8. CAS registry number: 76708-76-4. 1-(p-Tolyl)naphtharene White solid (55 mg, 50%). 1H NMR (400 MHz, CDCl3): δ = 8.04 (d, J = 8.5 Hz, 1 H), 8.00 (d, J = 8.0 Hz, 1 H), 7.94 (d, J = 8.5 Hz, 1 H), 7.64–7.45 (m, 6 H), 7.40 (d, J = 8.0 Hz, 2 H), 2.55 (s, 3 H). 13C NMR (CDCl3): δ = 140.2, 137.8, 136.9, 133.8, 131.7, 129.8, 128.9, 128.3, 127.5, 126.1, 125.9, 125.4, 21.2. CAS registry number: 27331-34-6. 4-Methoxybiphenyl White solid (78 mg, 85%). 1H NMR (400 MHz, CDCl3): δ = 7.58–7.51 (m, 4 H), 7.42 (t, J = 7.6 Hz, 2 H), 7.31 (t, J = 7.6 Hz, 1 H), 6.98 (d, J = 8.7 Hz, 2 H), 3.85 (s, 3 H). 13C NMR (CDCl3): δ = 159.1, 140.7, 133.7, 128.6, 128.0, 126.6, 126.6, 114.2, 55.3. CAS registry number: 613-37-6. 4-Acetylbiphenyl White solid (67 mg, 68%). 1H NMR (400 MHz, CDCl3): δ = 8.03 (d, J = 8.4 Hz, 2 H), 7.68–7.62 (m, 4 H), 7.47–7.39 (m, 3 H), 2.63 (s, 3 H). 13C NMR (CDCl3): δ = 198.0, 146.0, 140.1, 136.1, 132.9, 129.3, 129.2, 128.9, 127.5, 26.4. CAS registry number: 92-91-1. 4-Trifluoromethylbiphenyl White solid (106 mg, 95%). 1H NMR (400 MHz, CDCl3): δ = 7.76–7.68 (m, 4 H), 7.68–7.58 (m, 2 H), 7.51–7.38 (m, 3 H). 13C NMR (CDCl3): δ = 144.7, 139.7, 129.3 (q, J = 32.3 Hz), 129.0, 128.2, 127.6, 127.4, 127.3, 125.6 (q, J = 3.2 Hz), 124.3 (q, J = 272.1 Hz). CAS registry number: 398-36-7. 2-Methylbiphenyl White solid (55 mg, 65%). 1H NMR (400 MHz, CDCl3): δ = 7.42–7.21 (m, 9 H), 2.23 (s, 3 H). 13C NMR (CDCl3): δ = 142.3, 135.8, 131.3, 129.7, 129.3, 128.5, 128.4, 128.2, 127.6, 125.3, 20.5. CAS registry number: 643-58-3. 2-(p-Tolyl)thiophene White solid (45 mg, 52%). 1H NMR (400 MHz, CDCl3): δ = 7.48 (d, J = 8.2 Hz, 2 H), 7.23 (d, J = 3.6 Hz, 1 H), 7.19 (d, J = 5.0 Hz, 1 H), 7.15 (d, J = 8.2 Hz, 2 H), 7.06 (dd, J = 5.0, 3.6 Hz, 1 H), 2.32 (s, 3 H). 13C NMR (CDCl3): δ = 144.6, 137.0, 131.7, 129.5, 127.9, 125.8, 124.2, 122.6, 21.2. CAS registry number: 16939-04-1. 2-(p-Tolyl)pyridine Pale yellow oil (69 mg, 81%). 1H NMR (400 MHz, CDCl3): δ = 8.66 (d, J = 4.8 Hz, 1 H), 7.88 (d, J = 8.4 Hz, 2 H), 7.75–7.69 (m, 2 H), 7.28 (d, J = 8.4 Hz, 2 H), 7.20 (td, J = 4.8, 2.0 Hz, 1 H), 2.41 (s, 3 H). 13C NMR (CDCl3): δ = 157.6, 149.7, 139.0, 136.8, 136.7, 129.6, 126.9, 121.9, 120.4, 21.4. CAS registry number: 4467-06-5.