Dtsch Med Wochenschr 2021; 146(16): 1085-1090
DOI: 10.1055/a-1550-0001
Standpunkt

SARS-CoV-2-Impfstoffe und Reaktion des Immunsystems. Kann die epidemische Ausbreitung des Virus durch Impfung verhindert werden?

SARS-CoV-2 vaccines and reaction of the immune system. Can the epidemic spread of the virus be prevented by vaccination?
Jonas Schmidt
,
Frithjof Blessing
,
Lutz Gürtler

Die gegen das Coronavirus SARS-CoV-2 entwickelten Vakzine lösen eine starke Immunantwort aus. Dennoch werden sich für Viren typische häufige Mutationen im Genom fortsetzen, und es werden sich weitere Varianten selektionieren und bei mangelnder Immunität verbreiten. Offen ist zurzeit, wie lange der Impfschutz anhält, ob eine dritte Impfung verabreicht werden soll und inwieweit eine wiederholte Impfung mit einem Adenovirus-basierten Impfstoff verträglich ist.

Abstract

Since the end of 2019 a new coronavirus, SARS-CoV-2, first identified in Wuhan, China, is spreading around the world partially associated with a high death toll. Besides hygienic measurements to reduce the spread of the virus vaccines have been confected, partially based on the experiences with Ebola virus vaccine, based on recombinant human or chimpanzee adenovirus carrying the spike protein and its ACE2 receptor binding domain (RBD). Further vaccines are constructed by spike protein coding mRNA incorporated in lipid nano vesicles that after entry in human cells produce spike protein. Both vaccine types induce a strong immune response that lasts for months possibly for T-cell immunity a few years. Due to mutations in the coronavirus genome in several parts of the world variants selected, that were partially more pathogenic and partially easier transmissible – variants of concern (VOC). Until now vaccinees are protected against the VOC, even when protection might be reduced compared to the Wuhan wild virus.

An open field is still how long the vaccine induced immunity will be sufficient to prevent infection and/or disease; and how long the time period will last until revaccination will be required for life saving protection, whether a third vaccination is needed, and whether revaccination with an adenovirus-based vaccine will be tolerated.



Publication History

Article published online:
20 August 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Edridge AWD, Kaczorowska J, Hoste ACR. et al. Seasonal coronavirus protective immunity is short lasting. Nat Med 2020; 26: 1691-1693
  • 2 Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection – a narrative review. Ann Int Med 2021. doi:10.732620-3012
  • 3 Siddiqi HK, Libby P, Ridke PM. COVID-19 – a vascular disease. Trends Cardiovascul Med 2021; 31: 1-5
  • 4 Long B, Bridwell R, Gottlieb M. Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines. Am J Emerg Med 2021; 49: 58-61
  • 5 Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol 2020; 41: 1100-1115
  • 6 Li Y, Zhou W, Yang L. et al. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res 2020; 157: 1-8
  • 7 Koliaraki V, Prados A, Armaka M. et al. The mesenchymal context in inflammation, immunity and cancer. Nat Immunol 2020; 2: 974-982
  • 8 Pierce CA, Preston-Hurlburt P, Dai Y. et al. Immune response to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci Transl Med 2020; 12: eabd5487
  • 9 Trinité B, Tarrés-Freixas F, Rodon J. et al. SARS-CoV-2 infection elicits a rapid neutralization antibody response. Sci Rep 2021; 11: 2608
  • 10 Wölfel R, Corman VM, Guggemoos W. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020; 581: 465-469
  • 11 Iyer AS, Jones FK, Nodoushani A. et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol 2020; DOI: 10.1126/sciimmunol.abe0367.
  • 12 Hansen CH, Michlmayr D, Gubbels SM. et al. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. Lancet 2021; 397: 1204-1212
  • 13 Iwasaki A. What reinfections mean for COVID-19. Lancet Infect Dis 2021; 21: 3-5
  • 14 Vitale J, Mumoli N, Clerici P. et al. Assessment of SARS-CoV-2 reinfection 1 year after primary infection in a population in Lombardy, Italy. JAMA Int Med 2021; e212959 DOI: 10.1001/jamaintmed2021.2959.
  • 15 Stokel-Walker G. What we know about covid-19 reinfection so far. BMJ (Br Med J) 2021; 372: n99
  • 16 Faria NR, Mellan TK, Whittaker C. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021; 372: 815-821
  • 17 Xue M, Zhang T, Hu H. et al. Predictive effects of IgA and IgG combination to assess pulmonary exudation progression in COVID-19 patients. J Med Virol 2021; 93: 1443-1448
  • 18 Halstead SB, Katzelnick L. COVID-19 vaccines: should we fear ADE?. J Infect Dis 2020; 222: 1946-1950
  • 19 Liu W, Zhao M, Lin K. et al. T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV. Antivir Res 2017; 137: 82-92
  • 20 Rodda LB, Netland J, Shehata L. et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Cell 2021; 184: 169-183
  • 21 Poland GA, Ovsyannikova IG, Kennedy RB. SARS-CoV-2 immunity: review and application to phase 3 vaccine candidates. Lancet 2020; 398: 1595-1606
  • 22 Castells MC, Phillips EJ. Maintaining safety with SARS-Co-2 vaccines. N Engl J Med 2021; 384: 643-649
  • 23 Chakraborty S, Mallajosyula V, Tato CH. et al SARS-CoV-2vaccines in advanced clinical trials: where do we stand. Adv Drug Delivery Rev 2021; 172: 314-338
  • 24 Dakay K, Cooper J, Bloomfield J. et al. Cerebral venous thrombosis as a presentation of COVID-19. J Stroke Cerebrovascul Dis 2021; 30: 105434
  • 25 Dalidowska I, Gazi O, Prybylski M. et al. Heat shock protein 90 chaperones E1A early protein of adenovirus 5 and is essential for replication of the virus. Int J Mol Sci 2021; 22: 2020
  • 26 Mallapaty S. China’s COVID-19 vaccines are going global – but questions remain. Nature 2021; 593: 178-179
  • 27 Li Q, Wu J, Nie J. et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 2020; 182: 1284-1294
  • 28 Leung K, Shum MHH, Leung GM. et al. Early transmissibility assessment of the N501Y mutant strain of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveill 2021; 26: pii=2002106
  • 29 Weber S, Ramirez C, Doerfler W. Signal hotspot mutations in SARS-CoV-2 genome evolve as the virus spreads and actively replicates in different parts of the world. Virus Res 2020; 289: 198170
  • 30 Emary KRW, Golubchik T, Aley PK. et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet 2021; 397: 1351-1362
  • 31 McCallum M, Bassl J, De Marco A. et al. SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science 2021; eabl7994 DOI: 10.1126/science.abi7994.
  • 32 GOV UK. Medicines and Healthcare Product, Regulatory Agency. Information for UK recipients on COVID-19 vaccine Astra-Zeneca (Regulation 174). https://www.gov.uk/publications
  • 33 McGonagle D, De Marco G, Bridgewood C. Mechanisms of immunothrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection. J Autoimmunity 2021; 121: 102662
  • 34 Greinacher A, Thiele T, Warkentin TE. et al. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med 2021; 384: 2092-2101
  • 35 Montgomery J, Ryan M, Engler R. et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol 2021; DOI: 10.1001/jamacardio.2021.2833.
  • 36 Bahloul M, Ketala W, Lahyemi D. et al. Pulmonary capillary leak syndrome following COVID-19 virus infection. J Med Virol 2021; 93: 94-96
  • 37 Case R, Ramaniuk A, Martin P. et al. Systemic Capillary Leak Syndrome secondary to coronavirus disease 2019. Chest 2020; 158: e267-e268
  • 38 Heilingloh CS, Aufderhorst UW, Schipper L. et al. Susceptibility of SARS-CoV-2 to UV irradiation. Am J Infect Control 2020; 48: 1273-1275
  • 39 World Health Organization. WHO announces simple, easy-to-say labels for SARS-CoV-2. Im Internet (letzter Zugriff: 13. Juli 2021, https://www.who.int/news/item/31-05-2021-who-announces-simple-easy-to-say-labels-for-sars-cov-2-variants-of-interest-and-concern
  • 40 European Centre for Disease Prevention and Control. SARS-CoV-2 variants of concern as of 8 July 2021. Im Internet (letzter Zugriff: 13. Juli 2021, https://www.ecdc.europa.eu/en/covid-19/variants-concern